
myra.algorithm.PittsburghContinuousAntMiner Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of myra Show documentation
Show all versions of myra Show documentation
MYRA is a collection of Ant Colony Optimization (ACO) algorithms for the data mining classification task.
The newest version!
/*
* PittsburghContinuousAntMiner.java
* (this file is part of MYRA)
*
* Copyright 2008-2015 Fernando Esteban Barril Otero
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package myra.algorithm;
import static myra.Config.CONFIG;
import static myra.IterativeActivity.MAX_ITERATIONS;
import static myra.IterativeActivity.STAGNATION;
import static myra.Scheduler.COLONY_SIZE;
import static myra.Scheduler.PARALLEL;
import static myra.classification.rule.unordered.ConflictResolution.QUALITY;
import static myra.datamining.IntervalBuilder.DEFAULT_BUILDER;
import static myra.datamining.IntervalBuilder.MAXIMUM_LIMIT;
import static myra.datamining.IntervalBuilder.MINIMUM_CASES;
import static myra.rule.Assignator.ASSIGNATOR;
import static myra.rule.Heuristic.DEFAULT_HEURISTIC;
import static myra.rule.Heuristic.DYNAMIC_HEURISTIC;
import static myra.rule.ListMeasure.DEFAULT_MEASURE;
import static myra.rule.ListPruner.DEFAULT_LIST_PRUNER;
import static myra.rule.Pruner.DEFAULT_PRUNER;
import static myra.rule.Rule.DEFAULT_RULE;
import static myra.rule.RuleFunction.DEFAULT_FUNCTION;
import static myra.rule.RuleSet.CONFLICT_RESOLUTION;
import static myra.rule.pittsburgh.FindRuleListActivity.UNCOVERED;
import static myra.rule.pittsburgh.FindRuleSetActivity.UNORDERED;
import static myra.rule.pittsburgh.LevelPheromonePolicy.EVAPORATION_FACTOR;
import static myra.rule.pittsburgh.LevelPheromonePolicy.P_BEST;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.Map;
import myra.IterativeActivity;
import myra.Option;
import myra.Option.BooleanOption;
import myra.Option.DoubleOption;
import myra.Option.IntegerOption;
import myra.Scheduler;
import myra.classification.ClassificationModel;
import myra.classification.attribute.BoundarySplit;
import myra.classification.attribute.C45Split;
import myra.classification.attribute.MDLSplit;
import myra.classification.rule.ClassificationRule;
import myra.classification.rule.EntropyHeuristic;
import myra.classification.rule.ListAccuracy;
import myra.classification.rule.MajorityAssignator;
import myra.classification.rule.PessimisticAccuracy;
import myra.classification.rule.RuleClassifier;
import myra.classification.rule.function.Laplace;
import myra.classification.rule.function.MEstimate;
import myra.classification.rule.function.SensitivitySpecificity;
import myra.datamining.Dataset;
import myra.datamining.IntervalBuilder;
import myra.rule.BacktrackPruner;
import myra.rule.Graph;
import myra.rule.GreedyPruner;
import myra.rule.Heuristic;
import myra.rule.ListMeasure;
import myra.rule.ListPruner;
import myra.rule.Pruner;
import myra.rule.Rule;
import myra.rule.RuleFunction;
import myra.rule.RuleList;
import myra.rule.TopDownListPruner;
import myra.rule.pittsburgh.FindRuleListActivity;
import myra.rule.pittsburgh.FindRuleSetActivity;
/**
* This class represents the cAnt-MinerPB
* implementation, as described in the paper:
*
*
* @ARTICLE{Otero13covering,
* author = {F.E.B. Otero and A.A. Freitas and C.G. Johnson},
* title = {A New Sequential Covering Strategy for Inducing Classification Rules with Ant Colony Algorithms},
* journal = {IEEE Transactions on Evolutionary Computation},
* year = {2013},
* volume = {17},
* number = {1},
* pages = {64--74}
* }
*
*
* This implementation uses an error-based list quality function by default, as
* suggested in:
*
*
* @INPROCEEDINGS{Medland12datamining,
* author = {M. Medland and F.E.B. Otero and A.A. Freitas},
* title = {Improving the $c$Ant-Miner$_{\mathrm{PB}}$ Classification Algorithm},
* booktitle = {Swarm Intelligence, Lecture Notes in Computer Science 7461},
* editor = {M. Dorigo and M. Birattari and C. Blum and A.L. Christensen and A.P. Engelbrecht and R. Gro{\ss} and T. St{\"u}tzle},
* publisher = {Springer-Verlag},
* pages = {73–-84},
* year = {2012}
* }
*
*
* @author Fernando Esteban Barril Otero
*/
public class PittsburghContinuousAntMiner extends RuleClassifier {
@Override
protected void defaults() {
super.defaults();
// configuration not set via command line
CONFIG.set(ASSIGNATOR, new MajorityAssignator());
CONFIG.set(P_BEST, 0.05);
CONFIG.set(MAXIMUM_LIMIT, 25);
CONFIG.set(DEFAULT_RULE, ClassificationRule.class);
// default configuration values
CONFIG.set(COLONY_SIZE, 5);
CONFIG.set(MAX_ITERATIONS, 500);
CONFIG.set(MINIMUM_CASES, 10);
CONFIG.set(EVAPORATION_FACTOR, 0.9);
CONFIG.set(UNCOVERED, 0.01);
CONFIG.set(STAGNATION, 40);
CONFIG.set(DEFAULT_MEASURE, new PessimisticAccuracy());
CONFIG.set(DEFAULT_PRUNER, new BacktrackPruner());
CONFIG.set(DEFAULT_LIST_PRUNER, new ListPruner.None());
CONFIG.set(DEFAULT_FUNCTION, new SensitivitySpecificity());
CONFIG.set(DEFAULT_HEURISTIC, new EntropyHeuristic());
CONFIG.set(DYNAMIC_HEURISTIC, Boolean.FALSE);
CONFIG.set(DEFAULT_BUILDER, new MDLSplit(new BoundarySplit()));
}
@Override
protected ClassificationModel train(Dataset dataset) {
IterativeActivity activity = CONFIG.isPresent(UNORDERED)
? new FindRuleSetActivity(new Graph(dataset), dataset)
: new FindRuleListActivity(new Graph(dataset), dataset);
Scheduler scheduler = Scheduler.newInstance(1);
scheduler.setActivity(activity);
scheduler.run();
RuleList list = activity.getBest();
// if the list of rules was created in an unordered fashion, rules are
// ordered
// by quality and added to a (ordered) list of rules
if (CONFIG.isPresent(UNORDERED)) {
ArrayList rules =
new ArrayList(Arrays.asList(list.rules()));
// sort rules in descending
Collections.sort(rules, new Comparator() {
@Override
public int compare(Rule o1, Rule o2) {
return o2.compareTo(o1);
}
});
RuleList ordered = new RuleList();
ordered.setIteration(list.getIteration());
ordered.setQuality(list.getQuality());
for (Rule rule : rules) {
if (!rule.isEmpty()) {
ordered.add(rule);
}
}
// make sure the default rule is the last rule on the list
ordered.add(list.defaultRule());
list = ordered;
}
return new ClassificationModel(list);
}
@Override
protected Map processCommandLine(String[] args,
Collection
© 2015 - 2025 Weber Informatics LLC | Privacy Policy