
myra.classification.rule.PessimisticAccuracy Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of myra Show documentation
Show all versions of myra Show documentation
MYRA is a collection of Ant Colony Optimization (ACO) algorithms for the data mining classification task.
The newest version!
/*
* PessimisticAccuracy.java
* (this file is part of MYRA)
*
* Copyright 2008-2015 Fernando Esteban Barril Otero
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package myra.classification.rule;
import myra.Cost;
import myra.Cost.Maximise;
import myra.datamining.Dataset;
import myra.rule.ListMeasure;
import myra.rule.RuleList;
import myra.util.Stats;
/**
* Measure based on C4.5 error estimation.
*
* @author Fernando Esteban Barril Otero
*/
public class PessimisticAccuracy implements ListMeasure {
@Override
public Cost evaluate(Dataset dataset, RuleList list) {
if (list.size() == 0) {
return new Maximise();
}
// updates the coverage of each rule
list.apply(dataset);
// we assume that we are dealing with classification rules, which
// should be the case; there is nothing we can do if this is not
// the case, apart from raising an exception
ClassificationRule[] rules = (ClassificationRule[]) list.rules();
double[] coverage = new double[list.size()];
double[] errors = new double[list.size()];
// coverage and errors of each rule
for (int i = 0; i < coverage.length; i++) {
for (int j = 0; j < dataset.classLength(); j++) {
coverage[i] += rules[i].covered()[j];
if (j != rules[i].getConsequent().value()) {
errors[i] += rules[i].covered()[j];
}
}
}
// predicted errors of the list (sum of the estimated errors
// of each rule)
double predicted = 0;
for (int i = 0; i < coverage.length; i++) {
predicted += (errors[i] + Stats.errors(coverage[i], errors[i]));
}
return new Maximise(1.0 - (predicted / (double) dataset.size()));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy