knn.itemToItem.similarities.MetricCorrelation Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cf4j-recsys Show documentation
Show all versions of cf4j-recsys Show documentation
A Java's Collaborative Filtering library to carry out experiments in research of Collaborative Filtering based Recommender Systems. The library has been designed from researchers to researchers.
The newest version!
package cf4j.knn.itemToItem.similarities;
import cf4j.Item;
import cf4j.TestItem;
/**
* This class Implements Pearson Correlation as CF similarity metric for the items.
*
* @author Fernando Ortega
*/
public class MetricCorrelation extends ItemsSimilarities{
@Override
public double similarity (TestItem activeItem, Item targetItem) {
int u = 0, v = 0, common = 0;
double num = 0d, denActive = 0d, denTarget = 0d;
while (u < activeItem.getNumberOfRatings() && v < targetItem.getNumberOfRatings()) {
if (activeItem.getUsers()[u] < targetItem.getUsers()[v]) {
u++;
} else if (activeItem.getUsers()[u] > targetItem.getUsers()[v]) {
v++;
} else {
double fa = activeItem.getRatings()[u] - activeItem.getRatingAverage();
double ft = targetItem.getRatings()[v] - targetItem.getRatingAverage();
num += fa * ft;
denActive += fa * fa;
denTarget += ft * ft;
common++;
u++;
v++;
}
}
// If there is not ratings in common, similarity does not exists
if (common == 0) return Double.NEGATIVE_INFINITY;
// Denominator can not be zero
if (denActive == 0 || denTarget == 0) return Double.NEGATIVE_INFINITY;
// Return similarity
return num / Math.sqrt(denActive * denTarget);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy