knn.userToUser.similarities.MetricSingularities Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cf4j-recsys Show documentation
Show all versions of cf4j-recsys Show documentation
A Java's Collaborative Filtering library to carry out experiments in research of Collaborative Filtering based Recommender Systems. The library has been designed from researchers to researchers.
The newest version!
package cf4j.knn.userToUser.similarities;
import java.util.HashSet;
import cf4j.Item;
import cf4j.Kernel;
import cf4j.TestUser;
import cf4j.User;
/**
* Implements the following CF similarity metric: Bobadilla, J., Ortega, F., &
* Hernando, A. (2012). A collaborative filtering similarity measure based on
* singularities, Information Processing and Management, 48 (2), 204-217.
*
* @author Fernando Ortega
*/
public class MetricSingularities extends UsersSimilarities{
/**
* Maximum difference between the ratings
*/
private double maxDiff;
/**
* Relevant ratings set
*/
private HashSet relevantRatings;
/**
* Not relevant ratings set
*/
private HashSet notRelevantRatings;
/**
* Singularity of the relevant ratings
*/
private double [] singularityOfRelevantRatings;
/**
* Singularity of the not relevant ratings
*/
private double [] singularityOfNotRelevantRatings;
/**
* Constructor of the similarity metric
* @param relevantRatings Relevant ratings array
* @param notRelevantRatings Not relevant ratings array
*/
public MetricSingularities (double [] relevantRatings, double [] notRelevantRatings) {
this.relevantRatings = new HashSet ();
for (double r : relevantRatings) this.relevantRatings.add(r);
this.notRelevantRatings = new HashSet ();
for (double r : notRelevantRatings) this.notRelevantRatings.add(r);
this.maxDiff = Kernel.gi().getMaxRating() - Kernel.gi().getMinRating();
}
@Override
public void beforeRun () {
super.beforeRun();
double numUsers = Kernel.gi().getNumberOfUsers();
// To store items singularity
this.singularityOfRelevantRatings = new double [Kernel.gi().getNumberOfItems()];
this.singularityOfNotRelevantRatings = new double [Kernel.gi().getNumberOfItems()];
for (int i = 0; i < Kernel.gi().getNumberOfItems(); i++) {
Item item = Kernel.getInstance().getItems()[i];
int numberOfRelevantRatings = 0;
int numberOfNotRelevantRatings = 0;
for (double rating : item.getRatings()) {
if (relevantRatings.contains(rating)) numberOfRelevantRatings++;
if (notRelevantRatings.contains(rating)) numberOfNotRelevantRatings++;
}
this.singularityOfRelevantRatings[i] = 1d - numberOfRelevantRatings / numUsers;
this.singularityOfNotRelevantRatings[i] = 1d - numberOfNotRelevantRatings / numUsers;
}
}
@Override
public double similarity (TestUser activeUser, User targetUser) {
// Compute the metric
// (a) Both users have rated as relevant
// (b) Both users has rated as no relevant
// (c) One user has rated relevant and the other one has rated no relevant
double metric_a = 0d, metric_b = 0d, metric_c = 0d;
int items_a = 0, items_b = 0, items_c = 0;
int i = 0, j = 0, common = 0;
while (i < activeUser.getNumberOfRatings() && j < targetUser.getNumberOfRatings()) {
if (activeUser.getItems()[i] < targetUser.getItems()[j]) {
i++;
} else if (activeUser.getItems()[i] > targetUser.getItems()[j]) {
j++;
} else {
// Get the ratings
int itemCode = activeUser.getItems()[i];
int itemIndex = Kernel.getInstance().getItemIndex(itemCode);
double activeUserRating = activeUser.getRatings()[i];
double targetUserRating = targetUser.getRatings()[j];
// Both user have rated relevant
if (this.relevantRatings.contains(activeUserRating) && this.relevantRatings.contains(targetUserRating)) {
items_a++;
double sing_p = this.singularityOfRelevantRatings[itemIndex];
double diff = ((double) (activeUserRating - targetUserRating)) / this.maxDiff;
metric_a += (1d - diff * diff) * sing_p * sing_p;
// Both users have rated no relevant
} else if (this.notRelevantRatings.contains(activeUserRating) && this.notRelevantRatings.contains(targetUserRating)) {
items_b++;
double sing_n = this.singularityOfNotRelevantRatings[itemIndex];
double diff = ((double) (activeUserRating - targetUserRating)) / this.maxDiff;
metric_b += (1d - diff * diff) * sing_n * sing_n;
// One user has rated relevant and the other one has rated no relevat
} else {
items_c++;
double sing_p = this.singularityOfRelevantRatings[itemIndex];
double sing_n = this.singularityOfNotRelevantRatings[itemIndex];
double diff = ((double) (activeUserRating - targetUserRating)) / this.maxDiff;
metric_c += (1d - diff * diff) * sing_p * sing_n;
}
common++;
i++;
j++;
}
}
// If there is not items in common, similarity does not exists
if (common == 0) return Double.NEGATIVE_INFINITY;
// Normalization
if (items_a != 0) metric_a = metric_a / (double) items_a;
if (items_b != 0) metric_b = metric_b / (double) items_b;
if (items_c != 0) metric_c = metric_c / (double) items_c;
// Return similarity
return (metric_a + metric_b + metric_c) / 3d;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy