org.apache.commons.math3.analysis.interpolation.MicrosphereInterpolatingFunction Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cf4j-recsys Show documentation
Show all versions of cf4j-recsys Show documentation
A Java's Collaborative Filtering library to carry out experiments in research of Collaborative Filtering based Recommender Systems. The library has been designed from researchers to researchers.
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.analysis.interpolation;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.apache.commons.math3.analysis.MultivariateFunction;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.NoDataException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.linear.ArrayRealVector;
import org.apache.commons.math3.linear.RealVector;
import org.apache.commons.math3.random.UnitSphereRandomVectorGenerator;
import org.apache.commons.math3.util.FastMath;
/**
* Interpolating function that implements the
* Microsphere Projection.
*
* @deprecated Code will be removed in 4.0. Use {@link InterpolatingMicrosphere}
* and {@link MicrosphereProjectionInterpolator} instead.
*/
@Deprecated
public class MicrosphereInterpolatingFunction
implements MultivariateFunction {
/**
* Space dimension.
*/
private final int dimension;
/**
* Internal accounting data for the interpolation algorithm.
* Each element of the list corresponds to one surface element of
* the microsphere.
*/
private final List microsphere;
/**
* Exponent used in the power law that computes the weights of the
* sample data.
*/
private final double brightnessExponent;
/**
* Sample data.
*/
private final Map samples;
/**
* Class for storing the accounting data needed to perform the
* microsphere projection.
*/
private static class MicrosphereSurfaceElement {
/** Normal vector characterizing a surface element. */
private final RealVector normal;
/** Illumination received from the brightest sample. */
private double brightestIllumination;
/** Brightest sample. */
private Map.Entry brightestSample;
/**
* @param n Normal vector characterizing a surface element
* of the microsphere.
*/
MicrosphereSurfaceElement(double[] n) {
normal = new ArrayRealVector(n);
}
/**
* Return the normal vector.
* @return the normal vector
*/
RealVector normal() {
return normal;
}
/**
* Reset "illumination" and "sampleIndex".
*/
void reset() {
brightestIllumination = 0;
brightestSample = null;
}
/**
* Store the illumination and index of the brightest sample.
* @param illuminationFromSample illumination received from sample
* @param sample current sample illuminating the element
*/
void store(final double illuminationFromSample,
final Map.Entry sample) {
if (illuminationFromSample > this.brightestIllumination) {
this.brightestIllumination = illuminationFromSample;
this.brightestSample = sample;
}
}
/**
* Get the illumination of the element.
* @return the illumination.
*/
double illumination() {
return brightestIllumination;
}
/**
* Get the sample illuminating the element the most.
* @return the sample.
*/
Map.Entry sample() {
return brightestSample;
}
}
/**
* @param xval Arguments for the interpolation points.
* {@code xval[i][0]} is the first component of interpolation point
* {@code i}, {@code xval[i][1]} is the second component, and so on
* until {@code xval[i][d-1]}, the last component of that interpolation
* point (where {@code dimension} is thus the dimension of the sampled
* space).
* @param yval Values for the interpolation points.
* @param brightnessExponent Brightness dimming factor.
* @param microsphereElements Number of surface elements of the
* microsphere.
* @param rand Unit vector generator for creating the microsphere.
* @throws DimensionMismatchException if the lengths of {@code yval} and
* {@code xval} (equal to {@code n}, the number of interpolation points)
* do not match, or the the arrays {@code xval[0]} ... {@code xval[n]},
* have lengths different from {@code dimension}.
* @throws NoDataException if there an array has zero-length.
* @throws NullArgumentException if an argument is {@code null}.
*/
public MicrosphereInterpolatingFunction(double[][] xval,
double[] yval,
int brightnessExponent,
int microsphereElements,
UnitSphereRandomVectorGenerator rand)
throws DimensionMismatchException,
NoDataException,
NullArgumentException {
if (xval == null ||
yval == null) {
throw new NullArgumentException();
}
if (xval.length == 0) {
throw new NoDataException();
}
if (xval.length != yval.length) {
throw new DimensionMismatchException(xval.length, yval.length);
}
if (xval[0] == null) {
throw new NullArgumentException();
}
dimension = xval[0].length;
this.brightnessExponent = brightnessExponent;
// Copy data samples.
samples = new HashMap(yval.length);
for (int i = 0; i < xval.length; ++i) {
final double[] xvalI = xval[i];
if (xvalI == null) {
throw new NullArgumentException();
}
if (xvalI.length != dimension) {
throw new DimensionMismatchException(xvalI.length, dimension);
}
samples.put(new ArrayRealVector(xvalI), yval[i]);
}
microsphere = new ArrayList(microsphereElements);
// Generate the microsphere, assuming that a fairly large number of
// randomly generated normals will represent a sphere.
for (int i = 0; i < microsphereElements; i++) {
microsphere.add(new MicrosphereSurfaceElement(rand.nextVector()));
}
}
/**
* @param point Interpolation point.
* @return the interpolated value.
* @throws DimensionMismatchException if point dimension does not math sample
*/
public double value(double[] point) throws DimensionMismatchException {
final RealVector p = new ArrayRealVector(point);
// Reset.
for (MicrosphereSurfaceElement md : microsphere) {
md.reset();
}
// Compute contribution of each sample points to the microsphere elements illumination
for (Map.Entry sd : samples.entrySet()) {
// Vector between interpolation point and current sample point.
final RealVector diff = sd.getKey().subtract(p);
final double diffNorm = diff.getNorm();
if (FastMath.abs(diffNorm) < FastMath.ulp(1d)) {
// No need to interpolate, as the interpolation point is
// actually (very close to) one of the sampled points.
return sd.getValue();
}
for (MicrosphereSurfaceElement md : microsphere) {
final double w = FastMath.pow(diffNorm, -brightnessExponent);
md.store(cosAngle(diff, md.normal()) * w, sd);
}
}
// Interpolation calculation.
double value = 0;
double totalWeight = 0;
for (MicrosphereSurfaceElement md : microsphere) {
final double iV = md.illumination();
final Map.Entry sd = md.sample();
if (sd != null) {
value += iV * sd.getValue();
totalWeight += iV;
}
}
return value / totalWeight;
}
/**
* Compute the cosine of the angle between 2 vectors.
*
* @param v Vector.
* @param w Vector.
* @return the cosine of the angle between {@code v} and {@code w}.
*/
private double cosAngle(final RealVector v, final RealVector w) {
return v.dotProduct(w) / (v.getNorm() * w.getNorm());
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy