All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.analysis.polynomials.PolynomialFunction Maven / Gradle / Ivy

Go to download

A Java's Collaborative Filtering library to carry out experiments in research of Collaborative Filtering based Recommender Systems. The library has been designed from researchers to researchers.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.analysis.polynomials;

import java.io.Serializable;
import java.util.Arrays;

import org.apache.commons.math3.analysis.DifferentiableUnivariateFunction;
import org.apache.commons.math3.analysis.ParametricUnivariateFunction;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.analysis.differentiation.DerivativeStructure;
import org.apache.commons.math3.analysis.differentiation.UnivariateDifferentiableFunction;
import org.apache.commons.math3.exception.NoDataException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathUtils;

/**
 * Immutable representation of a real polynomial function with real coefficients.
 * 

* Horner's Method * is used to evaluate the function.

* */ public class PolynomialFunction implements UnivariateDifferentiableFunction, DifferentiableUnivariateFunction, Serializable { /** * Serialization identifier */ private static final long serialVersionUID = -7726511984200295583L; /** * The coefficients of the polynomial, ordered by degree -- i.e., * coefficients[0] is the constant term and coefficients[n] is the * coefficient of x^n where n is the degree of the polynomial. */ private final double coefficients[]; /** * Construct a polynomial with the given coefficients. The first element * of the coefficients array is the constant term. Higher degree * coefficients follow in sequence. The degree of the resulting polynomial * is the index of the last non-null element of the array, or 0 if all elements * are null. *

* The constructor makes a copy of the input array and assigns the copy to * the coefficients property.

* * @param c Polynomial coefficients. * @throws NullArgumentException if {@code c} is {@code null}. * @throws NoDataException if {@code c} is empty. */ public PolynomialFunction(double c[]) throws NullArgumentException, NoDataException { super(); MathUtils.checkNotNull(c); int n = c.length; if (n == 0) { throw new NoDataException(LocalizedFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY); } while ((n > 1) && (c[n - 1] == 0)) { --n; } this.coefficients = new double[n]; System.arraycopy(c, 0, this.coefficients, 0, n); } /** * Compute the value of the function for the given argument. *

* The value returned is

* {@code coefficients[n] * x^n + ... + coefficients[1] * x + coefficients[0]} *

* * @param x Argument for which the function value should be computed. * @return the value of the polynomial at the given point. * @see UnivariateFunction#value(double) */ public double value(double x) { return evaluate(coefficients, x); } /** * Returns the degree of the polynomial. * * @return the degree of the polynomial. */ public int degree() { return coefficients.length - 1; } /** * Returns a copy of the coefficients array. *

* Changes made to the returned copy will not affect the coefficients of * the polynomial.

* * @return a fresh copy of the coefficients array. */ public double[] getCoefficients() { return coefficients.clone(); } /** * Uses Horner's Method to evaluate the polynomial with the given coefficients at * the argument. * * @param coefficients Coefficients of the polynomial to evaluate. * @param argument Input value. * @return the value of the polynomial. * @throws NoDataException if {@code coefficients} is empty. * @throws NullArgumentException if {@code coefficients} is {@code null}. */ protected static double evaluate(double[] coefficients, double argument) throws NullArgumentException, NoDataException { MathUtils.checkNotNull(coefficients); int n = coefficients.length; if (n == 0) { throw new NoDataException(LocalizedFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY); } double result = coefficients[n - 1]; for (int j = n - 2; j >= 0; j--) { result = argument * result + coefficients[j]; } return result; } /** {@inheritDoc} * @since 3.1 * @throws NoDataException if {@code coefficients} is empty. * @throws NullArgumentException if {@code coefficients} is {@code null}. */ public DerivativeStructure value(final DerivativeStructure t) throws NullArgumentException, NoDataException { MathUtils.checkNotNull(coefficients); int n = coefficients.length; if (n == 0) { throw new NoDataException(LocalizedFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY); } DerivativeStructure result = new DerivativeStructure(t.getFreeParameters(), t.getOrder(), coefficients[n - 1]); for (int j = n - 2; j >= 0; j--) { result = result.multiply(t).add(coefficients[j]); } return result; } /** * Add a polynomial to the instance. * * @param p Polynomial to add. * @return a new polynomial which is the sum of the instance and {@code p}. */ public PolynomialFunction add(final PolynomialFunction p) { // identify the lowest degree polynomial final int lowLength = FastMath.min(coefficients.length, p.coefficients.length); final int highLength = FastMath.max(coefficients.length, p.coefficients.length); // build the coefficients array double[] newCoefficients = new double[highLength]; for (int i = 0; i < lowLength; ++i) { newCoefficients[i] = coefficients[i] + p.coefficients[i]; } System.arraycopy((coefficients.length < p.coefficients.length) ? p.coefficients : coefficients, lowLength, newCoefficients, lowLength, highLength - lowLength); return new PolynomialFunction(newCoefficients); } /** * Subtract a polynomial from the instance. * * @param p Polynomial to subtract. * @return a new polynomial which is the instance minus {@code p}. */ public PolynomialFunction subtract(final PolynomialFunction p) { // identify the lowest degree polynomial int lowLength = FastMath.min(coefficients.length, p.coefficients.length); int highLength = FastMath.max(coefficients.length, p.coefficients.length); // build the coefficients array double[] newCoefficients = new double[highLength]; for (int i = 0; i < lowLength; ++i) { newCoefficients[i] = coefficients[i] - p.coefficients[i]; } if (coefficients.length < p.coefficients.length) { for (int i = lowLength; i < highLength; ++i) { newCoefficients[i] = -p.coefficients[i]; } } else { System.arraycopy(coefficients, lowLength, newCoefficients, lowLength, highLength - lowLength); } return new PolynomialFunction(newCoefficients); } /** * Negate the instance. * * @return a new polynomial with all coefficients negated */ public PolynomialFunction negate() { double[] newCoefficients = new double[coefficients.length]; for (int i = 0; i < coefficients.length; ++i) { newCoefficients[i] = -coefficients[i]; } return new PolynomialFunction(newCoefficients); } /** * Multiply the instance by a polynomial. * * @param p Polynomial to multiply by. * @return a new polynomial equal to this times {@code p} */ public PolynomialFunction multiply(final PolynomialFunction p) { double[] newCoefficients = new double[coefficients.length + p.coefficients.length - 1]; for (int i = 0; i < newCoefficients.length; ++i) { newCoefficients[i] = 0.0; for (int j = FastMath.max(0, i + 1 - p.coefficients.length); j < FastMath.min(coefficients.length, i + 1); ++j) { newCoefficients[i] += coefficients[j] * p.coefficients[i-j]; } } return new PolynomialFunction(newCoefficients); } /** * Returns the coefficients of the derivative of the polynomial with the given coefficients. * * @param coefficients Coefficients of the polynomial to differentiate. * @return the coefficients of the derivative or {@code null} if coefficients has length 1. * @throws NoDataException if {@code coefficients} is empty. * @throws NullArgumentException if {@code coefficients} is {@code null}. */ protected static double[] differentiate(double[] coefficients) throws NullArgumentException, NoDataException { MathUtils.checkNotNull(coefficients); int n = coefficients.length; if (n == 0) { throw new NoDataException(LocalizedFormats.EMPTY_POLYNOMIALS_COEFFICIENTS_ARRAY); } if (n == 1) { return new double[]{0}; } double[] result = new double[n - 1]; for (int i = n - 1; i > 0; i--) { result[i - 1] = i * coefficients[i]; } return result; } /** * Returns the derivative as a {@link PolynomialFunction}. * * @return the derivative polynomial. */ public PolynomialFunction polynomialDerivative() { return new PolynomialFunction(differentiate(coefficients)); } /** * Returns the derivative as a {@link UnivariateFunction}. * * @return the derivative function. */ public UnivariateFunction derivative() { return polynomialDerivative(); } /** * Returns a string representation of the polynomial. * *

The representation is user oriented. Terms are displayed lowest * degrees first. The multiplications signs, coefficients equals to * one and null terms are not displayed (except if the polynomial is 0, * in which case the 0 constant term is displayed). Addition of terms * with negative coefficients are replaced by subtraction of terms * with positive coefficients except for the first displayed term * (i.e. we display -3 for a constant negative polynomial, * but 1 - 3 x + x^2 if the negative coefficient is not * the first one displayed).

* * @return a string representation of the polynomial. */ @Override public String toString() { StringBuilder s = new StringBuilder(); if (coefficients[0] == 0.0) { if (coefficients.length == 1) { return "0"; } } else { s.append(toString(coefficients[0])); } for (int i = 1; i < coefficients.length; ++i) { if (coefficients[i] != 0) { if (s.length() > 0) { if (coefficients[i] < 0) { s.append(" - "); } else { s.append(" + "); } } else { if (coefficients[i] < 0) { s.append("-"); } } double absAi = FastMath.abs(coefficients[i]); if ((absAi - 1) != 0) { s.append(toString(absAi)); s.append(' '); } s.append("x"); if (i > 1) { s.append('^'); s.append(Integer.toString(i)); } } } return s.toString(); } /** * Creates a string representing a coefficient, removing ".0" endings. * * @param coeff Coefficient. * @return a string representation of {@code coeff}. */ private static String toString(double coeff) { final String c = Double.toString(coeff); if (c.endsWith(".0")) { return c.substring(0, c.length() - 2); } else { return c; } } /** {@inheritDoc} */ @Override public int hashCode() { final int prime = 31; int result = 1; result = prime * result + Arrays.hashCode(coefficients); return result; } /** {@inheritDoc} */ @Override public boolean equals(Object obj) { if (this == obj) { return true; } if (!(obj instanceof PolynomialFunction)) { return false; } PolynomialFunction other = (PolynomialFunction) obj; if (!Arrays.equals(coefficients, other.coefficients)) { return false; } return true; } /** * Dedicated parametric polynomial class. * * @since 3.0 */ public static class Parametric implements ParametricUnivariateFunction { /** {@inheritDoc} */ public double[] gradient(double x, double ... parameters) { final double[] gradient = new double[parameters.length]; double xn = 1.0; for (int i = 0; i < parameters.length; ++i) { gradient[i] = xn; xn *= x; } return gradient; } /** {@inheritDoc} */ public double value(final double x, final double ... parameters) throws NoDataException { return PolynomialFunction.evaluate(parameters, x); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy