All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.analysis.solvers.BrentSolver Maven / Gradle / Ivy

Go to download

A Java's Collaborative Filtering library to carry out experiments in research of Collaborative Filtering based Recommender Systems. The library has been designed from researchers to researchers.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.analysis.solvers;


import org.apache.commons.math3.exception.NoBracketingException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.TooManyEvaluationsException;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.Precision;

/**
 * This class implements the 
 * Brent algorithm for finding zeros of real univariate functions.
 * The function should be continuous but not necessarily smooth.
 * The {@code solve} method returns a zero {@code x} of the function {@code f}
 * in the given interval {@code [a, b]} to within a tolerance
 * {@code 2 eps abs(x) + t} where {@code eps} is the relative accuracy and
 * {@code t} is the absolute accuracy.
 * 

The given interval must bracket the root.

*

* The reference implementation is given in chapter 4 of *

* Algorithms for Minimization Without Derivatives, * Richard P. Brent, * Dover, 2002 *
* * @see BaseAbstractUnivariateSolver */ public class BrentSolver extends AbstractUnivariateSolver { /** Default absolute accuracy. */ private static final double DEFAULT_ABSOLUTE_ACCURACY = 1e-6; /** * Construct a solver with default absolute accuracy (1e-6). */ public BrentSolver() { this(DEFAULT_ABSOLUTE_ACCURACY); } /** * Construct a solver. * * @param absoluteAccuracy Absolute accuracy. */ public BrentSolver(double absoluteAccuracy) { super(absoluteAccuracy); } /** * Construct a solver. * * @param relativeAccuracy Relative accuracy. * @param absoluteAccuracy Absolute accuracy. */ public BrentSolver(double relativeAccuracy, double absoluteAccuracy) { super(relativeAccuracy, absoluteAccuracy); } /** * Construct a solver. * * @param relativeAccuracy Relative accuracy. * @param absoluteAccuracy Absolute accuracy. * @param functionValueAccuracy Function value accuracy. * * @see BaseAbstractUnivariateSolver#BaseAbstractUnivariateSolver(double,double,double) */ public BrentSolver(double relativeAccuracy, double absoluteAccuracy, double functionValueAccuracy) { super(relativeAccuracy, absoluteAccuracy, functionValueAccuracy); } /** * {@inheritDoc} */ @Override protected double doSolve() throws NoBracketingException, TooManyEvaluationsException, NumberIsTooLargeException { double min = getMin(); double max = getMax(); final double initial = getStartValue(); final double functionValueAccuracy = getFunctionValueAccuracy(); verifySequence(min, initial, max); // Return the initial guess if it is good enough. double yInitial = computeObjectiveValue(initial); if (FastMath.abs(yInitial) <= functionValueAccuracy) { return initial; } // Return the first endpoint if it is good enough. double yMin = computeObjectiveValue(min); if (FastMath.abs(yMin) <= functionValueAccuracy) { return min; } // Reduce interval if min and initial bracket the root. if (yInitial * yMin < 0) { return brent(min, initial, yMin, yInitial); } // Return the second endpoint if it is good enough. double yMax = computeObjectiveValue(max); if (FastMath.abs(yMax) <= functionValueAccuracy) { return max; } // Reduce interval if initial and max bracket the root. if (yInitial * yMax < 0) { return brent(initial, max, yInitial, yMax); } throw new NoBracketingException(min, max, yMin, yMax); } /** * Search for a zero inside the provided interval. * This implementation is based on the algorithm described at page 58 of * the book *
* Algorithms for Minimization Without Derivatives, * Richard P. Brent, * Dover 0-486-41998-3 *
* * @param lo Lower bound of the search interval. * @param hi Higher bound of the search interval. * @param fLo Function value at the lower bound of the search interval. * @param fHi Function value at the higher bound of the search interval. * @return the value where the function is zero. */ private double brent(double lo, double hi, double fLo, double fHi) { double a = lo; double fa = fLo; double b = hi; double fb = fHi; double c = a; double fc = fa; double d = b - a; double e = d; final double t = getAbsoluteAccuracy(); final double eps = getRelativeAccuracy(); while (true) { if (FastMath.abs(fc) < FastMath.abs(fb)) { a = b; b = c; c = a; fa = fb; fb = fc; fc = fa; } final double tol = 2 * eps * FastMath.abs(b) + t; final double m = 0.5 * (c - b); if (FastMath.abs(m) <= tol || Precision.equals(fb, 0)) { return b; } if (FastMath.abs(e) < tol || FastMath.abs(fa) <= FastMath.abs(fb)) { // Force bisection. d = m; e = d; } else { double s = fb / fa; double p; double q; // The equality test (a == c) is intentional, // it is part of the original Brent's method and // it should NOT be replaced by proximity test. if (a == c) { // Linear interpolation. p = 2 * m * s; q = 1 - s; } else { // Inverse quadratic interpolation. q = fa / fc; final double r = fb / fc; p = s * (2 * m * q * (q - r) - (b - a) * (r - 1)); q = (q - 1) * (r - 1) * (s - 1); } if (p > 0) { q = -q; } else { p = -p; } s = e; e = d; if (p >= 1.5 * m * q - FastMath.abs(tol * q) || p >= FastMath.abs(0.5 * s * q)) { // Inverse quadratic interpolation gives a value // in the wrong direction, or progress is slow. // Fall back to bisection. d = m; e = d; } else { d = p / q; } } a = b; fa = fb; if (FastMath.abs(d) > tol) { b += d; } else if (m > 0) { b += tol; } else { b -= tol; } fb = computeObjectiveValue(b); if ((fb > 0 && fc > 0) || (fb <= 0 && fc <= 0)) { c = a; fc = fa; d = b - a; e = d; } } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy