All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.distribution.KolmogorovSmirnovDistribution Maven / Gradle / Ivy

Go to download

A Java's Collaborative Filtering library to carry out experiments in research of Collaborative Filtering based Recommender Systems. The library has been designed from researchers to researchers.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.distribution;

import java.io.Serializable;
import java.math.BigDecimal;

import org.apache.commons.math3.exception.MathArithmeticException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.fraction.BigFraction;
import org.apache.commons.math3.fraction.BigFractionField;
import org.apache.commons.math3.fraction.FractionConversionException;
import org.apache.commons.math3.linear.Array2DRowFieldMatrix;
import org.apache.commons.math3.linear.Array2DRowRealMatrix;
import org.apache.commons.math3.linear.FieldMatrix;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.util.FastMath;

/**
 * Implementation of the Kolmogorov-Smirnov distribution.
 *
 * 

* Treats the distribution of the two-sided {@code P(D_n < d)} where * {@code D_n = sup_x |G(x) - G_n (x)|} for the theoretical cdf {@code G} and * the empirical cdf {@code G_n}. *

*

* This implementation is based on [1] with certain quick decisions for extreme * values given in [2]. *

*

* In short, when wanting to evaluate {@code P(D_n < d)}, the method in [1] is * to write {@code d = (k - h) / n} for positive integer {@code k} and * {@code 0 <= h < 1}. Then {@code P(D_n < d) = (n! / n^n) * t_kk}, where * {@code t_kk} is the {@code (k, k)}'th entry in the special matrix * {@code H^n}, i.e. {@code H} to the {@code n}'th power. *

*

* References: *

* Note that [1] contains an error in computing h, refer to * MATH-437 for details. *

* * @see * Kolmogorov-Smirnov test (Wikipedia) * @deprecated to be removed in version 4.0 - * use {@link org.apache.commons.math3.stat.inference.KolmogorovSmirnovTest} */ public class KolmogorovSmirnovDistribution implements Serializable { /** Serializable version identifier. */ private static final long serialVersionUID = -4670676796862967187L; /** Number of observations. */ private int n; /** * @param n Number of observations * @throws NotStrictlyPositiveException if {@code n <= 0} */ public KolmogorovSmirnovDistribution(int n) throws NotStrictlyPositiveException { if (n <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.NOT_POSITIVE_NUMBER_OF_SAMPLES, n); } this.n = n; } /** * Calculates {@code P(D_n < d)} using method described in [1] with quick * decisions for extreme values given in [2] (see above). The result is not * exact as with * {@link KolmogorovSmirnovDistribution#cdfExact(double)} because * calculations are based on {@code double} rather than * {@link org.apache.commons.math3.fraction.BigFraction}. * * @param d statistic * @return the two-sided probability of {@code P(D_n < d)} * @throws MathArithmeticException if algorithm fails to convert {@code h} * to a {@link org.apache.commons.math3.fraction.BigFraction} in expressing * {@code d} as {@code (k - h) / m} for integer {@code k, m} and * {@code 0 <= h < 1}. */ public double cdf(double d) throws MathArithmeticException { return this.cdf(d, false); } /** * Calculates {@code P(D_n < d)} using method described in [1] with quick * decisions for extreme values given in [2] (see above). The result is * exact in the sense that BigFraction/BigReal is used everywhere at the * expense of very slow execution time. Almost never choose this in real * applications unless you are very sure; this is almost solely for * verification purposes. Normally, you would choose * {@link KolmogorovSmirnovDistribution#cdf(double)} * * @param d statistic * @return the two-sided probability of {@code P(D_n < d)} * @throws MathArithmeticException if algorithm fails to convert {@code h} * to a {@link org.apache.commons.math3.fraction.BigFraction} in expressing * {@code d} as {@code (k - h) / m} for integer {@code k, m} and * {@code 0 <= h < 1}. */ public double cdfExact(double d) throws MathArithmeticException { return this.cdf(d, true); } /** * Calculates {@code P(D_n < d)} using method described in [1] with quick * decisions for extreme values given in [2] (see above). * * @param d statistic * @param exact whether the probability should be calculated exact using * {@link org.apache.commons.math3.fraction.BigFraction} everywhere at the * expense of very slow execution time, or if {@code double} should be used * convenient places to gain speed. Almost never choose {@code true} in real * applications unless you are very sure; {@code true} is almost solely for * verification purposes. * @return the two-sided probability of {@code P(D_n < d)} * @throws MathArithmeticException if algorithm fails to convert {@code h} * to a {@link org.apache.commons.math3.fraction.BigFraction} in expressing * {@code d} as {@code (k - h) / m} for integer {@code k, m} and * {@code 0 <= h < 1}. */ public double cdf(double d, boolean exact) throws MathArithmeticException { final double ninv = 1 / ((double) n); final double ninvhalf = 0.5 * ninv; if (d <= ninvhalf) { return 0; } else if (ninvhalf < d && d <= ninv) { double res = 1; double f = 2 * d - ninv; // n! f^n = n*f * (n-1)*f * ... * 1*x for (int i = 1; i <= n; ++i) { res *= i * f; } return res; } else if (1 - ninv <= d && d < 1) { return 1 - 2 * FastMath.pow(1 - d, n); } else if (1 <= d) { return 1; } return exact ? exactK(d) : roundedK(d); } /** * Calculates the exact value of {@code P(D_n < d)} using method described * in [1] and {@link org.apache.commons.math3.fraction.BigFraction} (see * above). * * @param d statistic * @return the two-sided probability of {@code P(D_n < d)} * @throws MathArithmeticException if algorithm fails to convert {@code h} * to a {@link org.apache.commons.math3.fraction.BigFraction} in expressing * {@code d} as {@code (k - h) / m} for integer {@code k, m} and * {@code 0 <= h < 1}. */ private double exactK(double d) throws MathArithmeticException { final int k = (int) FastMath.ceil(n * d); final FieldMatrix H = this.createH(d); final FieldMatrix Hpower = H.power(n); BigFraction pFrac = Hpower.getEntry(k - 1, k - 1); for (int i = 1; i <= n; ++i) { pFrac = pFrac.multiply(i).divide(n); } /* * BigFraction.doubleValue converts numerator to double and the * denominator to double and divides afterwards. That gives NaN quite * easy. This does not (scale is the number of digits): */ return pFrac.bigDecimalValue(20, BigDecimal.ROUND_HALF_UP).doubleValue(); } /** * Calculates {@code P(D_n < d)} using method described in [1] and doubles * (see above). * * @param d statistic * @return the two-sided probability of {@code P(D_n < d)} * @throws MathArithmeticException if algorithm fails to convert {@code h} * to a {@link org.apache.commons.math3.fraction.BigFraction} in expressing * {@code d} as {@code (k - h) / m} for integer {@code k, m} and * {@code 0 <= h < 1}. */ private double roundedK(double d) throws MathArithmeticException { final int k = (int) FastMath.ceil(n * d); final FieldMatrix HBigFraction = this.createH(d); final int m = HBigFraction.getRowDimension(); /* * Here the rounding part comes into play: use * RealMatrix instead of FieldMatrix */ final RealMatrix H = new Array2DRowRealMatrix(m, m); for (int i = 0; i < m; ++i) { for (int j = 0; j < m; ++j) { H.setEntry(i, j, HBigFraction.getEntry(i, j).doubleValue()); } } final RealMatrix Hpower = H.power(n); double pFrac = Hpower.getEntry(k - 1, k - 1); for (int i = 1; i <= n; ++i) { pFrac *= (double) i / (double) n; } return pFrac; } /*** * Creates {@code H} of size {@code m x m} as described in [1] (see above). * * @param d statistic * @return H matrix * @throws NumberIsTooLargeException if fractional part is greater than 1 * @throws FractionConversionException if algorithm fails to convert * {@code h} to a {@link org.apache.commons.math3.fraction.BigFraction} in * expressing {@code d} as {@code (k - h) / m} for integer {@code k, m} and * {@code 0 <= h < 1}. */ private FieldMatrix createH(double d) throws NumberIsTooLargeException, FractionConversionException { int k = (int) FastMath.ceil(n * d); int m = 2 * k - 1; double hDouble = k - n * d; if (hDouble >= 1) { throw new NumberIsTooLargeException(hDouble, 1.0, false); } BigFraction h = null; try { h = new BigFraction(hDouble, 1.0e-20, 10000); } catch (FractionConversionException e1) { try { h = new BigFraction(hDouble, 1.0e-10, 10000); } catch (FractionConversionException e2) { h = new BigFraction(hDouble, 1.0e-5, 10000); } } final BigFraction[][] Hdata = new BigFraction[m][m]; /* * Start by filling everything with either 0 or 1. */ for (int i = 0; i < m; ++i) { for (int j = 0; j < m; ++j) { if (i - j + 1 < 0) { Hdata[i][j] = BigFraction.ZERO; } else { Hdata[i][j] = BigFraction.ONE; } } } /* * Setting up power-array to avoid calculating the same value twice: * hPowers[0] = h^1 ... hPowers[m-1] = h^m */ final BigFraction[] hPowers = new BigFraction[m]; hPowers[0] = h; for (int i = 1; i < m; ++i) { hPowers[i] = h.multiply(hPowers[i - 1]); } /* * First column and last row has special values (each other reversed). */ for (int i = 0; i < m; ++i) { Hdata[i][0] = Hdata[i][0].subtract(hPowers[i]); Hdata[m - 1][i] = Hdata[m - 1][i].subtract(hPowers[m - i - 1]); } /* * [1] states: "For 1/2 < h < 1 the bottom left element of the matrix * should be (1 - 2*h^m + (2h - 1)^m )/m!" Since 0 <= h < 1, then if h > * 1/2 is sufficient to check: */ if (h.compareTo(BigFraction.ONE_HALF) == 1) { Hdata[m - 1][0] = Hdata[m - 1][0].add(h.multiply(2).subtract(1).pow(m)); } /* * Aside from the first column and last row, the (i, j)-th element is * 1/(i - j + 1)! if i - j + 1 >= 0, else 0. 1's and 0's are already * put, so only division with (i - j + 1)! is needed in the elements * that have 1's. There is no need to calculate (i - j + 1)! and then * divide - small steps avoid overflows. * * Note that i - j + 1 > 0 <=> i + 1 > j instead of j'ing all the way to * m. Also note that it is started at g = 2 because dividing by 1 isn't * really necessary. */ for (int i = 0; i < m; ++i) { for (int j = 0; j < i + 1; ++j) { if (i - j + 1 > 0) { for (int g = 2; g <= i - j + 1; ++g) { Hdata[i][j] = Hdata[i][j].divide(g); } } } } return new Array2DRowFieldMatrix(BigFractionField.getInstance(), Hdata); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy