All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.distribution.UniformRealDistribution Maven / Gradle / Ivy

Go to download

A Java's Collaborative Filtering library to carry out experiments in research of Collaborative Filtering based Recommender Systems. The library has been designed from researchers to researchers.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.distribution;

import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;

/**
 * Implementation of the uniform real distribution.
 *
 * @see Uniform distribution (continuous), at Wikipedia
 *
 * @since 3.0
 */
public class UniformRealDistribution extends AbstractRealDistribution {
    /** Default inverse cumulative probability accuracy.
     * @deprecated as of 3.2 not used anymore, will be removed in 4.0
     */
    @Deprecated
    public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
    /** Serializable version identifier. */
    private static final long serialVersionUID = 20120109L;
    /** Lower bound of this distribution (inclusive). */
    private final double lower;
    /** Upper bound of this distribution (exclusive). */
    private final double upper;

    /**
     * Create a standard uniform real distribution with lower bound (inclusive)
     * equal to zero and upper bound (exclusive) equal to one.
     * 

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. */ public UniformRealDistribution() { this(0, 1); } /** * Create a uniform real distribution using the given lower and upper * bounds. *

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param lower Lower bound of this distribution (inclusive). * @param upper Upper bound of this distribution (exclusive). * @throws NumberIsTooLargeException if {@code lower >= upper}. */ public UniformRealDistribution(double lower, double upper) throws NumberIsTooLargeException { this(new Well19937c(), lower, upper); } /** * Create a uniform distribution. * * @param lower Lower bound of this distribution (inclusive). * @param upper Upper bound of this distribution (exclusive). * @param inverseCumAccuracy Inverse cumulative probability accuracy. * @throws NumberIsTooLargeException if {@code lower >= upper}. * @deprecated as of 3.2, inverse CDF is now calculated analytically, use * {@link #UniformRealDistribution(double, double)} instead. */ @Deprecated public UniformRealDistribution(double lower, double upper, double inverseCumAccuracy) throws NumberIsTooLargeException { this(new Well19937c(), lower, upper); } /** * Creates a uniform distribution. * * @param rng Random number generator. * @param lower Lower bound of this distribution (inclusive). * @param upper Upper bound of this distribution (exclusive). * @param inverseCumAccuracy Inverse cumulative probability accuracy. * @throws NumberIsTooLargeException if {@code lower >= upper}. * @since 3.1 * @deprecated as of 3.2, inverse CDF is now calculated analytically, use * {@link #UniformRealDistribution(RandomGenerator, double, double)} * instead. */ @Deprecated public UniformRealDistribution(RandomGenerator rng, double lower, double upper, double inverseCumAccuracy){ this(rng, lower, upper); } /** * Creates a uniform distribution. * * @param rng Random number generator. * @param lower Lower bound of this distribution (inclusive). * @param upper Upper bound of this distribution (exclusive). * @throws NumberIsTooLargeException if {@code lower >= upper}. * @since 3.1 */ public UniformRealDistribution(RandomGenerator rng, double lower, double upper) throws NumberIsTooLargeException { super(rng); if (lower >= upper) { throw new NumberIsTooLargeException( LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND, lower, upper, false); } this.lower = lower; this.upper = upper; } /** {@inheritDoc} */ public double density(double x) { if (x < lower || x > upper) { return 0.0; } return 1 / (upper - lower); } /** {@inheritDoc} */ public double cumulativeProbability(double x) { if (x <= lower) { return 0; } if (x >= upper) { return 1; } return (x - lower) / (upper - lower); } /** {@inheritDoc} */ @Override public double inverseCumulativeProbability(final double p) throws OutOfRangeException { if (p < 0.0 || p > 1.0) { throw new OutOfRangeException(p, 0, 1); } return p * (upper - lower) + lower; } /** * {@inheritDoc} * * For lower bound {@code lower} and upper bound {@code upper}, the mean is * {@code 0.5 * (lower + upper)}. */ public double getNumericalMean() { return 0.5 * (lower + upper); } /** * {@inheritDoc} * * For lower bound {@code lower} and upper bound {@code upper}, the * variance is {@code (upper - lower)^2 / 12}. */ public double getNumericalVariance() { double ul = upper - lower; return ul * ul / 12; } /** * {@inheritDoc} * * The lower bound of the support is equal to the lower bound parameter * of the distribution. * * @return lower bound of the support */ public double getSupportLowerBound() { return lower; } /** * {@inheritDoc} * * The upper bound of the support is equal to the upper bound parameter * of the distribution. * * @return upper bound of the support */ public double getSupportUpperBound() { return upper; } /** {@inheritDoc} */ public boolean isSupportLowerBoundInclusive() { return true; } /** {@inheritDoc} */ public boolean isSupportUpperBoundInclusive() { return true; } /** * {@inheritDoc} * * The support of this distribution is connected. * * @return {@code true} */ public boolean isSupportConnected() { return true; } /** {@inheritDoc} */ @Override public double sample() { final double u = random.nextDouble(); return u * upper + (1 - u) * lower; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy