All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.genetics.OrderedCrossover Maven / Gradle / Ivy

Go to download

A Java's Collaborative Filtering library to carry out experiments in research of Collaborative Filtering based Recommender Systems. The library has been designed from researchers to researchers.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.genetics;

import java.util.ArrayList;
import java.util.Collections;
import java.util.HashSet;
import java.util.List;
import java.util.Set;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.util.FastMath;

/**
 * Order 1 Crossover [OX1] builds offspring from ordered chromosomes by copying a
 * consecutive slice from one parent, and filling up the remaining genes from the other
 * parent as they appear.
 * 

* This policy works by applying the following rules: *

    *
  1. select a random slice of consecutive genes from parent 1
  2. *
  3. copy the slice to child 1 and mark out the genes in parent 2
  4. *
  5. starting from the right side of the slice, copy genes from parent 2 as they * appear to child 1 if they are not yet marked out.
  6. *
*

* Example (random sublist from index 3 to 7, underlined): *

 * p1 = (8 4 7 3 6 2 5 1 9 0)   X   c1 = (0 4 7 3 6 2 5 1 8 9)
 *             ---------                        ---------
 * p2 = (0 1 2 3 4 5 6 7 8 9)   X   c2 = (8 1 2 3 4 5 6 7 9 0)
 * 
*

* This policy works only on {@link AbstractListChromosome}, and therefore it * is parameterized by T. Moreover, the chromosomes must have same lengths. * * @see * Order 1 Crossover Operator * * @param generic type of the {@link AbstractListChromosome}s for crossover * @since 3.1 */ public class OrderedCrossover implements CrossoverPolicy { /** * {@inheritDoc} * * @throws MathIllegalArgumentException iff one of the chromosomes is * not an instance of {@link AbstractListChromosome} * @throws DimensionMismatchException if the length of the two chromosomes is different */ @SuppressWarnings("unchecked") public ChromosomePair crossover(final Chromosome first, final Chromosome second) throws DimensionMismatchException, MathIllegalArgumentException { if (!(first instanceof AbstractListChromosome && second instanceof AbstractListChromosome)) { throw new MathIllegalArgumentException(LocalizedFormats.INVALID_FIXED_LENGTH_CHROMOSOME); } return mate((AbstractListChromosome) first, (AbstractListChromosome) second); } /** * Helper for {@link #crossover(Chromosome, Chromosome)}. Performs the actual crossover. * * @param first the first chromosome * @param second the second chromosome * @return the pair of new chromosomes that resulted from the crossover * @throws DimensionMismatchException if the length of the two chromosomes is different */ protected ChromosomePair mate(final AbstractListChromosome first, final AbstractListChromosome second) throws DimensionMismatchException { final int length = first.getLength(); if (length != second.getLength()) { throw new DimensionMismatchException(second.getLength(), length); } // array representations of the parents final List parent1Rep = first.getRepresentation(); final List parent2Rep = second.getRepresentation(); // and of the children final List child1 = new ArrayList(length); final List child2 = new ArrayList(length); // sets of already inserted items for quick access final Set child1Set = new HashSet(length); final Set child2Set = new HashSet(length); final RandomGenerator random = GeneticAlgorithm.getRandomGenerator(); // choose random points, making sure that lb < ub. int a = random.nextInt(length); int b; do { b = random.nextInt(length); } while (a == b); // determine the lower and upper bounds final int lb = FastMath.min(a, b); final int ub = FastMath.max(a, b); // add the subLists that are between lb and ub child1.addAll(parent1Rep.subList(lb, ub + 1)); child1Set.addAll(child1); child2.addAll(parent2Rep.subList(lb, ub + 1)); child2Set.addAll(child2); // iterate over every item in the parents for (int i = 1; i <= length; i++) { final int idx = (ub + i) % length; // retrieve the current item in each parent final T item1 = parent1Rep.get(idx); final T item2 = parent2Rep.get(idx); // if the first child already contains the item in the second parent add it if (!child1Set.contains(item2)) { child1.add(item2); child1Set.add(item2); } // if the second child already contains the item in the first parent add it if (!child2Set.contains(item1)) { child2.add(item1); child2Set.add(item1); } } // rotate so that the original slice is in the same place as in the parents. Collections.rotate(child1, lb); Collections.rotate(child2, lb); return new ChromosomePair(first.newFixedLengthChromosome(child1), second.newFixedLengthChromosome(child2)); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy