All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.linear.EigenDecomposition Maven / Gradle / Ivy

Go to download

A Java's Collaborative Filtering library to carry out experiments in research of Collaborative Filtering based Recommender Systems. The library has been designed from researchers to researchers.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.linear;

import org.apache.commons.math3.complex.Complex;
import org.apache.commons.math3.exception.MathArithmeticException;
import org.apache.commons.math3.exception.MathUnsupportedOperationException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.Precision;
import org.apache.commons.math3.util.FastMath;

/**
 * Calculates the eigen decomposition of a real matrix.
 * 

The eigen decomposition of matrix A is a set of two matrices: * V and D such that A = V × D × VT. * A, V and D are all m × m matrices.

*

This class is similar in spirit to the EigenvalueDecomposition * class from the JAMA * library, with the following changes:

*
    *
  • a {@link #getVT() getVt} method has been added,
  • *
  • two {@link #getRealEigenvalue(int) getRealEigenvalue} and {@link #getImagEigenvalue(int) * getImagEigenvalue} methods to pick up a single eigenvalue have been added,
  • *
  • a {@link #getEigenvector(int) getEigenvector} method to pick up a single * eigenvector has been added,
  • *
  • a {@link #getDeterminant() getDeterminant} method has been added.
  • *
  • a {@link #getSolver() getSolver} method has been added.
  • *
*

* As of 3.1, this class supports general real matrices (both symmetric and non-symmetric): *

*

* If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal and the eigenvector * matrix V is orthogonal, i.e. A = V.multiply(D.multiply(V.transpose())) and * V.multiply(V.transpose()) equals the identity matrix. *

*

* If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues * in 1-by-1 blocks and any complex eigenvalues, lambda + i*mu, in 2-by-2 blocks: *

 *    [lambda, mu    ]
 *    [   -mu, lambda]
 * 
* The columns of V represent the eigenvectors in the sense that A*V = V*D, * i.e. A.multiply(V) equals V.multiply(D). * The matrix V may be badly conditioned, or even singular, so the validity of the equation * A = V*D*inverse(V) depends upon the condition of V. *

*

* This implementation is based on the paper by A. Drubrulle, R.S. Martin and * J.H. Wilkinson "The Implicit QL Algorithm" in Wilksinson and Reinsch (1971) * Handbook for automatic computation, vol. 2, Linear algebra, Springer-Verlag, * New-York *

* @see MathWorld * @see Wikipedia * @since 2.0 (changed to concrete class in 3.0) */ public class EigenDecomposition { /** Internally used epsilon criteria. */ private static final double EPSILON = 1e-12; /** Maximum number of iterations accepted in the implicit QL transformation */ private byte maxIter = 30; /** Main diagonal of the tridiagonal matrix. */ private double[] main; /** Secondary diagonal of the tridiagonal matrix. */ private double[] secondary; /** * Transformer to tridiagonal (may be null if matrix is already * tridiagonal). */ private TriDiagonalTransformer transformer; /** Real part of the realEigenvalues. */ private double[] realEigenvalues; /** Imaginary part of the realEigenvalues. */ private double[] imagEigenvalues; /** Eigenvectors. */ private ArrayRealVector[] eigenvectors; /** Cached value of V. */ private RealMatrix cachedV; /** Cached value of D. */ private RealMatrix cachedD; /** Cached value of Vt. */ private RealMatrix cachedVt; /** Whether the matrix is symmetric. */ private final boolean isSymmetric; /** * Calculates the eigen decomposition of the given real matrix. *

* Supports decomposition of a general matrix since 3.1. * * @param matrix Matrix to decompose. * @throws MaxCountExceededException if the algorithm fails to converge. * @throws MathArithmeticException if the decomposition of a general matrix * results in a matrix with zero norm * @since 3.1 */ public EigenDecomposition(final RealMatrix matrix) throws MathArithmeticException { final double symTol = 10 * matrix.getRowDimension() * matrix.getColumnDimension() * Precision.EPSILON; isSymmetric = MatrixUtils.isSymmetric(matrix, symTol); if (isSymmetric) { transformToTridiagonal(matrix); findEigenVectors(transformer.getQ().getData()); } else { final SchurTransformer t = transformToSchur(matrix); findEigenVectorsFromSchur(t); } } /** * Calculates the eigen decomposition of the given real matrix. * * @param matrix Matrix to decompose. * @param splitTolerance Dummy parameter (present for backward * compatibility only). * @throws MathArithmeticException if the decomposition of a general matrix * results in a matrix with zero norm * @throws MaxCountExceededException if the algorithm fails to converge. * @deprecated in 3.1 (to be removed in 4.0) due to unused parameter */ @Deprecated public EigenDecomposition(final RealMatrix matrix, final double splitTolerance) throws MathArithmeticException { this(matrix); } /** * Calculates the eigen decomposition of the symmetric tridiagonal * matrix. The Householder matrix is assumed to be the identity matrix. * * @param main Main diagonal of the symmetric tridiagonal form. * @param secondary Secondary of the tridiagonal form. * @throws MaxCountExceededException if the algorithm fails to converge. * @since 3.1 */ public EigenDecomposition(final double[] main, final double[] secondary) { isSymmetric = true; this.main = main.clone(); this.secondary = secondary.clone(); transformer = null; final int size = main.length; final double[][] z = new double[size][size]; for (int i = 0; i < size; i++) { z[i][i] = 1.0; } findEigenVectors(z); } /** * Calculates the eigen decomposition of the symmetric tridiagonal * matrix. The Householder matrix is assumed to be the identity matrix. * * @param main Main diagonal of the symmetric tridiagonal form. * @param secondary Secondary of the tridiagonal form. * @param splitTolerance Dummy parameter (present for backward * compatibility only). * @throws MaxCountExceededException if the algorithm fails to converge. * @deprecated in 3.1 (to be removed in 4.0) due to unused parameter */ @Deprecated public EigenDecomposition(final double[] main, final double[] secondary, final double splitTolerance) { this(main, secondary); } /** * Gets the matrix V of the decomposition. * V is an orthogonal matrix, i.e. its transpose is also its inverse. * The columns of V are the eigenvectors of the original matrix. * No assumption is made about the orientation of the system axes formed * by the columns of V (e.g. in a 3-dimension space, V can form a left- * or right-handed system). * * @return the V matrix. */ public RealMatrix getV() { if (cachedV == null) { final int m = eigenvectors.length; cachedV = MatrixUtils.createRealMatrix(m, m); for (int k = 0; k < m; ++k) { cachedV.setColumnVector(k, eigenvectors[k]); } } // return the cached matrix return cachedV; } /** * Gets the block diagonal matrix D of the decomposition. * D is a block diagonal matrix. * Real eigenvalues are on the diagonal while complex values are on * 2x2 blocks { {real +imaginary}, {-imaginary, real} }. * * @return the D matrix. * * @see #getRealEigenvalues() * @see #getImagEigenvalues() */ public RealMatrix getD() { if (cachedD == null) { // cache the matrix for subsequent calls cachedD = MatrixUtils.createRealDiagonalMatrix(realEigenvalues); for (int i = 0; i < imagEigenvalues.length; i++) { if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) > 0) { cachedD.setEntry(i, i+1, imagEigenvalues[i]); } else if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) < 0) { cachedD.setEntry(i, i-1, imagEigenvalues[i]); } } } return cachedD; } /** * Gets the transpose of the matrix V of the decomposition. * V is an orthogonal matrix, i.e. its transpose is also its inverse. * The columns of V are the eigenvectors of the original matrix. * No assumption is made about the orientation of the system axes formed * by the columns of V (e.g. in a 3-dimension space, V can form a left- * or right-handed system). * * @return the transpose of the V matrix. */ public RealMatrix getVT() { if (cachedVt == null) { final int m = eigenvectors.length; cachedVt = MatrixUtils.createRealMatrix(m, m); for (int k = 0; k < m; ++k) { cachedVt.setRowVector(k, eigenvectors[k]); } } // return the cached matrix return cachedVt; } /** * Returns whether the calculated eigen values are complex or real. *

The method performs a zero check for each element of the * {@link #getImagEigenvalues()} array and returns {@code true} if any * element is not equal to zero. * * @return {@code true} if the eigen values are complex, {@code false} otherwise * @since 3.1 */ public boolean hasComplexEigenvalues() { for (int i = 0; i < imagEigenvalues.length; i++) { if (!Precision.equals(imagEigenvalues[i], 0.0, EPSILON)) { return true; } } return false; } /** * Gets a copy of the real parts of the eigenvalues of the original matrix. * * @return a copy of the real parts of the eigenvalues of the original matrix. * * @see #getD() * @see #getRealEigenvalue(int) * @see #getImagEigenvalues() */ public double[] getRealEigenvalues() { return realEigenvalues.clone(); } /** * Returns the real part of the ith eigenvalue of the original * matrix. * * @param i index of the eigenvalue (counting from 0) * @return real part of the ith eigenvalue of the original * matrix. * * @see #getD() * @see #getRealEigenvalues() * @see #getImagEigenvalue(int) */ public double getRealEigenvalue(final int i) { return realEigenvalues[i]; } /** * Gets a copy of the imaginary parts of the eigenvalues of the original * matrix. * * @return a copy of the imaginary parts of the eigenvalues of the original * matrix. * * @see #getD() * @see #getImagEigenvalue(int) * @see #getRealEigenvalues() */ public double[] getImagEigenvalues() { return imagEigenvalues.clone(); } /** * Gets the imaginary part of the ith eigenvalue of the original * matrix. * * @param i Index of the eigenvalue (counting from 0). * @return the imaginary part of the ith eigenvalue of the original * matrix. * * @see #getD() * @see #getImagEigenvalues() * @see #getRealEigenvalue(int) */ public double getImagEigenvalue(final int i) { return imagEigenvalues[i]; } /** * Gets a copy of the ith eigenvector of the original matrix. * * @param i Index of the eigenvector (counting from 0). * @return a copy of the ith eigenvector of the original matrix. * @see #getD() */ public RealVector getEigenvector(final int i) { return eigenvectors[i].copy(); } /** * Computes the determinant of the matrix. * * @return the determinant of the matrix. */ public double getDeterminant() { double determinant = 1; for (double lambda : realEigenvalues) { determinant *= lambda; } return determinant; } /** * Computes the square-root of the matrix. * This implementation assumes that the matrix is symmetric and positive * definite. * * @return the square-root of the matrix. * @throws MathUnsupportedOperationException if the matrix is not * symmetric or not positive definite. * @since 3.1 */ public RealMatrix getSquareRoot() { if (!isSymmetric) { throw new MathUnsupportedOperationException(); } final double[] sqrtEigenValues = new double[realEigenvalues.length]; for (int i = 0; i < realEigenvalues.length; i++) { final double eigen = realEigenvalues[i]; if (eigen <= 0) { throw new MathUnsupportedOperationException(); } sqrtEigenValues[i] = FastMath.sqrt(eigen); } final RealMatrix sqrtEigen = MatrixUtils.createRealDiagonalMatrix(sqrtEigenValues); final RealMatrix v = getV(); final RealMatrix vT = getVT(); return v.multiply(sqrtEigen).multiply(vT); } /** * Gets a solver for finding the A × X = B solution in exact * linear sense. *

* Since 3.1, eigen decomposition of a general matrix is supported, * but the {@link DecompositionSolver} only supports real eigenvalues. * * @return a solver * @throws MathUnsupportedOperationException if the decomposition resulted in * complex eigenvalues */ public DecompositionSolver getSolver() { if (hasComplexEigenvalues()) { throw new MathUnsupportedOperationException(); } return new Solver(realEigenvalues, imagEigenvalues, eigenvectors); } /** Specialized solver. */ private static class Solver implements DecompositionSolver { /** Real part of the realEigenvalues. */ private double[] realEigenvalues; /** Imaginary part of the realEigenvalues. */ private double[] imagEigenvalues; /** Eigenvectors. */ private final ArrayRealVector[] eigenvectors; /** * Builds a solver from decomposed matrix. * * @param realEigenvalues Real parts of the eigenvalues. * @param imagEigenvalues Imaginary parts of the eigenvalues. * @param eigenvectors Eigenvectors. */ private Solver(final double[] realEigenvalues, final double[] imagEigenvalues, final ArrayRealVector[] eigenvectors) { this.realEigenvalues = realEigenvalues; this.imagEigenvalues = imagEigenvalues; this.eigenvectors = eigenvectors; } /** * Solves the linear equation A × X = B for symmetric matrices A. *

* This method only finds exact linear solutions, i.e. solutions for * which ||A × X - B|| is exactly 0. *

* * @param b Right-hand side of the equation A × X = B. * @return a Vector X that minimizes the two norm of A × X - B. * * @throws DimensionMismatchException if the matrices dimensions do not match. * @throws SingularMatrixException if the decomposed matrix is singular. */ public RealVector solve(final RealVector b) { if (!isNonSingular()) { throw new SingularMatrixException(); } final int m = realEigenvalues.length; if (b.getDimension() != m) { throw new DimensionMismatchException(b.getDimension(), m); } final double[] bp = new double[m]; for (int i = 0; i < m; ++i) { final ArrayRealVector v = eigenvectors[i]; final double[] vData = v.getDataRef(); final double s = v.dotProduct(b) / realEigenvalues[i]; for (int j = 0; j < m; ++j) { bp[j] += s * vData[j]; } } return new ArrayRealVector(bp, false); } /** {@inheritDoc} */ public RealMatrix solve(RealMatrix b) { if (!isNonSingular()) { throw new SingularMatrixException(); } final int m = realEigenvalues.length; if (b.getRowDimension() != m) { throw new DimensionMismatchException(b.getRowDimension(), m); } final int nColB = b.getColumnDimension(); final double[][] bp = new double[m][nColB]; final double[] tmpCol = new double[m]; for (int k = 0; k < nColB; ++k) { for (int i = 0; i < m; ++i) { tmpCol[i] = b.getEntry(i, k); bp[i][k] = 0; } for (int i = 0; i < m; ++i) { final ArrayRealVector v = eigenvectors[i]; final double[] vData = v.getDataRef(); double s = 0; for (int j = 0; j < m; ++j) { s += v.getEntry(j) * tmpCol[j]; } s /= realEigenvalues[i]; for (int j = 0; j < m; ++j) { bp[j][k] += s * vData[j]; } } } return new Array2DRowRealMatrix(bp, false); } /** * Checks whether the decomposed matrix is non-singular. * * @return true if the decomposed matrix is non-singular. */ public boolean isNonSingular() { double largestEigenvalueNorm = 0.0; // Looping over all values (in case they are not sorted in decreasing // order of their norm). for (int i = 0; i < realEigenvalues.length; ++i) { largestEigenvalueNorm = FastMath.max(largestEigenvalueNorm, eigenvalueNorm(i)); } // Corner case: zero matrix, all exactly 0 eigenvalues if (largestEigenvalueNorm == 0.0) { return false; } for (int i = 0; i < realEigenvalues.length; ++i) { // Looking for eigenvalues that are 0, where we consider anything much much smaller // than the largest eigenvalue to be effectively 0. if (Precision.equals(eigenvalueNorm(i) / largestEigenvalueNorm, 0, EPSILON)) { return false; } } return true; } /** * @param i which eigenvalue to find the norm of * @return the norm of ith (complex) eigenvalue. */ private double eigenvalueNorm(int i) { final double re = realEigenvalues[i]; final double im = imagEigenvalues[i]; return FastMath.sqrt(re * re + im * im); } /** * Get the inverse of the decomposed matrix. * * @return the inverse matrix. * @throws SingularMatrixException if the decomposed matrix is singular. */ public RealMatrix getInverse() { if (!isNonSingular()) { throw new SingularMatrixException(); } final int m = realEigenvalues.length; final double[][] invData = new double[m][m]; for (int i = 0; i < m; ++i) { final double[] invI = invData[i]; for (int j = 0; j < m; ++j) { double invIJ = 0; for (int k = 0; k < m; ++k) { final double[] vK = eigenvectors[k].getDataRef(); invIJ += vK[i] * vK[j] / realEigenvalues[k]; } invI[j] = invIJ; } } return MatrixUtils.createRealMatrix(invData); } } /** * Transforms the matrix to tridiagonal form. * * @param matrix Matrix to transform. */ private void transformToTridiagonal(final RealMatrix matrix) { // transform the matrix to tridiagonal transformer = new TriDiagonalTransformer(matrix); main = transformer.getMainDiagonalRef(); secondary = transformer.getSecondaryDiagonalRef(); } /** * Find eigenvalues and eigenvectors (Dubrulle et al., 1971) * * @param householderMatrix Householder matrix of the transformation * to tridiagonal form. */ private void findEigenVectors(final double[][] householderMatrix) { final double[][]z = householderMatrix.clone(); final int n = main.length; realEigenvalues = new double[n]; imagEigenvalues = new double[n]; final double[] e = new double[n]; for (int i = 0; i < n - 1; i++) { realEigenvalues[i] = main[i]; e[i] = secondary[i]; } realEigenvalues[n - 1] = main[n - 1]; e[n - 1] = 0; // Determine the largest main and secondary value in absolute term. double maxAbsoluteValue = 0; for (int i = 0; i < n; i++) { if (FastMath.abs(realEigenvalues[i]) > maxAbsoluteValue) { maxAbsoluteValue = FastMath.abs(realEigenvalues[i]); } if (FastMath.abs(e[i]) > maxAbsoluteValue) { maxAbsoluteValue = FastMath.abs(e[i]); } } // Make null any main and secondary value too small to be significant if (maxAbsoluteValue != 0) { for (int i=0; i < n; i++) { if (FastMath.abs(realEigenvalues[i]) <= Precision.EPSILON * maxAbsoluteValue) { realEigenvalues[i] = 0; } if (FastMath.abs(e[i]) <= Precision.EPSILON * maxAbsoluteValue) { e[i]=0; } } } for (int j = 0; j < n; j++) { int its = 0; int m; do { for (m = j; m < n - 1; m++) { double delta = FastMath.abs(realEigenvalues[m]) + FastMath.abs(realEigenvalues[m + 1]); if (FastMath.abs(e[m]) + delta == delta) { break; } } if (m != j) { if (its == maxIter) { throw new MaxCountExceededException(LocalizedFormats.CONVERGENCE_FAILED, maxIter); } its++; double q = (realEigenvalues[j + 1] - realEigenvalues[j]) / (2 * e[j]); double t = FastMath.sqrt(1 + q * q); if (q < 0.0) { q = realEigenvalues[m] - realEigenvalues[j] + e[j] / (q - t); } else { q = realEigenvalues[m] - realEigenvalues[j] + e[j] / (q + t); } double u = 0.0; double s = 1.0; double c = 1.0; int i; for (i = m - 1; i >= j; i--) { double p = s * e[i]; double h = c * e[i]; if (FastMath.abs(p) >= FastMath.abs(q)) { c = q / p; t = FastMath.sqrt(c * c + 1.0); e[i + 1] = p * t; s = 1.0 / t; c *= s; } else { s = p / q; t = FastMath.sqrt(s * s + 1.0); e[i + 1] = q * t; c = 1.0 / t; s *= c; } if (e[i + 1] == 0.0) { realEigenvalues[i + 1] -= u; e[m] = 0.0; break; } q = realEigenvalues[i + 1] - u; t = (realEigenvalues[i] - q) * s + 2.0 * c * h; u = s * t; realEigenvalues[i + 1] = q + u; q = c * t - h; for (int ia = 0; ia < n; ia++) { p = z[ia][i + 1]; z[ia][i + 1] = s * z[ia][i] + c * p; z[ia][i] = c * z[ia][i] - s * p; } } if (t == 0.0 && i >= j) { continue; } realEigenvalues[j] -= u; e[j] = q; e[m] = 0.0; } } while (m != j); } //Sort the eigen values (and vectors) in increase order for (int i = 0; i < n; i++) { int k = i; double p = realEigenvalues[i]; for (int j = i + 1; j < n; j++) { if (realEigenvalues[j] > p) { k = j; p = realEigenvalues[j]; } } if (k != i) { realEigenvalues[k] = realEigenvalues[i]; realEigenvalues[i] = p; for (int j = 0; j < n; j++) { p = z[j][i]; z[j][i] = z[j][k]; z[j][k] = p; } } } // Determine the largest eigen value in absolute term. maxAbsoluteValue = 0; for (int i = 0; i < n; i++) { if (FastMath.abs(realEigenvalues[i]) > maxAbsoluteValue) { maxAbsoluteValue=FastMath.abs(realEigenvalues[i]); } } // Make null any eigen value too small to be significant if (maxAbsoluteValue != 0.0) { for (int i=0; i < n; i++) { if (FastMath.abs(realEigenvalues[i]) < Precision.EPSILON * maxAbsoluteValue) { realEigenvalues[i] = 0; } } } eigenvectors = new ArrayRealVector[n]; final double[] tmp = new double[n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { tmp[j] = z[j][i]; } eigenvectors[i] = new ArrayRealVector(tmp); } } /** * Transforms the matrix to Schur form and calculates the eigenvalues. * * @param matrix Matrix to transform. * @return the {@link SchurTransformer Shur transform} for this matrix */ private SchurTransformer transformToSchur(final RealMatrix matrix) { final SchurTransformer schurTransform = new SchurTransformer(matrix); final double[][] matT = schurTransform.getT().getData(); realEigenvalues = new double[matT.length]; imagEigenvalues = new double[matT.length]; for (int i = 0; i < realEigenvalues.length; i++) { if (i == (realEigenvalues.length - 1) || Precision.equals(matT[i + 1][i], 0.0, EPSILON)) { realEigenvalues[i] = matT[i][i]; } else { final double x = matT[i + 1][i + 1]; final double p = 0.5 * (matT[i][i] - x); final double z = FastMath.sqrt(FastMath.abs(p * p + matT[i + 1][i] * matT[i][i + 1])); realEigenvalues[i] = x + p; imagEigenvalues[i] = z; realEigenvalues[i + 1] = x + p; imagEigenvalues[i + 1] = -z; i++; } } return schurTransform; } /** * Performs a division of two complex numbers. * * @param xr real part of the first number * @param xi imaginary part of the first number * @param yr real part of the second number * @param yi imaginary part of the second number * @return result of the complex division */ private Complex cdiv(final double xr, final double xi, final double yr, final double yi) { return new Complex(xr, xi).divide(new Complex(yr, yi)); } /** * Find eigenvectors from a matrix transformed to Schur form. * * @param schur the schur transformation of the matrix * @throws MathArithmeticException if the Schur form has a norm of zero */ private void findEigenVectorsFromSchur(final SchurTransformer schur) throws MathArithmeticException { final double[][] matrixT = schur.getT().getData(); final double[][] matrixP = schur.getP().getData(); final int n = matrixT.length; // compute matrix norm double norm = 0.0; for (int i = 0; i < n; i++) { for (int j = FastMath.max(i - 1, 0); j < n; j++) { norm += FastMath.abs(matrixT[i][j]); } } // we can not handle a matrix with zero norm if (Precision.equals(norm, 0.0, EPSILON)) { throw new MathArithmeticException(LocalizedFormats.ZERO_NORM); } // Backsubstitute to find vectors of upper triangular form double r = 0.0; double s = 0.0; double z = 0.0; for (int idx = n - 1; idx >= 0; idx--) { double p = realEigenvalues[idx]; double q = imagEigenvalues[idx]; if (Precision.equals(q, 0.0)) { // Real vector int l = idx; matrixT[idx][idx] = 1.0; for (int i = idx - 1; i >= 0; i--) { double w = matrixT[i][i] - p; r = 0.0; for (int j = l; j <= idx; j++) { r += matrixT[i][j] * matrixT[j][idx]; } if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) < 0) { z = w; s = r; } else { l = i; if (Precision.equals(imagEigenvalues[i], 0.0)) { if (w != 0.0) { matrixT[i][idx] = -r / w; } else { matrixT[i][idx] = -r / (Precision.EPSILON * norm); } } else { // Solve real equations double x = matrixT[i][i + 1]; double y = matrixT[i + 1][i]; q = (realEigenvalues[i] - p) * (realEigenvalues[i] - p) + imagEigenvalues[i] * imagEigenvalues[i]; double t = (x * s - z * r) / q; matrixT[i][idx] = t; if (FastMath.abs(x) > FastMath.abs(z)) { matrixT[i + 1][idx] = (-r - w * t) / x; } else { matrixT[i + 1][idx] = (-s - y * t) / z; } } // Overflow control double t = FastMath.abs(matrixT[i][idx]); if ((Precision.EPSILON * t) * t > 1) { for (int j = i; j <= idx; j++) { matrixT[j][idx] /= t; } } } } } else if (q < 0.0) { // Complex vector int l = idx - 1; // Last vector component imaginary so matrix is triangular if (FastMath.abs(matrixT[idx][idx - 1]) > FastMath.abs(matrixT[idx - 1][idx])) { matrixT[idx - 1][idx - 1] = q / matrixT[idx][idx - 1]; matrixT[idx - 1][idx] = -(matrixT[idx][idx] - p) / matrixT[idx][idx - 1]; } else { final Complex result = cdiv(0.0, -matrixT[idx - 1][idx], matrixT[idx - 1][idx - 1] - p, q); matrixT[idx - 1][idx - 1] = result.getReal(); matrixT[idx - 1][idx] = result.getImaginary(); } matrixT[idx][idx - 1] = 0.0; matrixT[idx][idx] = 1.0; for (int i = idx - 2; i >= 0; i--) { double ra = 0.0; double sa = 0.0; for (int j = l; j <= idx; j++) { ra += matrixT[i][j] * matrixT[j][idx - 1]; sa += matrixT[i][j] * matrixT[j][idx]; } double w = matrixT[i][i] - p; if (Precision.compareTo(imagEigenvalues[i], 0.0, EPSILON) < 0) { z = w; r = ra; s = sa; } else { l = i; if (Precision.equals(imagEigenvalues[i], 0.0)) { final Complex c = cdiv(-ra, -sa, w, q); matrixT[i][idx - 1] = c.getReal(); matrixT[i][idx] = c.getImaginary(); } else { // Solve complex equations double x = matrixT[i][i + 1]; double y = matrixT[i + 1][i]; double vr = (realEigenvalues[i] - p) * (realEigenvalues[i] - p) + imagEigenvalues[i] * imagEigenvalues[i] - q * q; final double vi = (realEigenvalues[i] - p) * 2.0 * q; if (Precision.equals(vr, 0.0) && Precision.equals(vi, 0.0)) { vr = Precision.EPSILON * norm * (FastMath.abs(w) + FastMath.abs(q) + FastMath.abs(x) + FastMath.abs(y) + FastMath.abs(z)); } final Complex c = cdiv(x * r - z * ra + q * sa, x * s - z * sa - q * ra, vr, vi); matrixT[i][idx - 1] = c.getReal(); matrixT[i][idx] = c.getImaginary(); if (FastMath.abs(x) > (FastMath.abs(z) + FastMath.abs(q))) { matrixT[i + 1][idx - 1] = (-ra - w * matrixT[i][idx - 1] + q * matrixT[i][idx]) / x; matrixT[i + 1][idx] = (-sa - w * matrixT[i][idx] - q * matrixT[i][idx - 1]) / x; } else { final Complex c2 = cdiv(-r - y * matrixT[i][idx - 1], -s - y * matrixT[i][idx], z, q); matrixT[i + 1][idx - 1] = c2.getReal(); matrixT[i + 1][idx] = c2.getImaginary(); } } // Overflow control double t = FastMath.max(FastMath.abs(matrixT[i][idx - 1]), FastMath.abs(matrixT[i][idx])); if ((Precision.EPSILON * t) * t > 1) { for (int j = i; j <= idx; j++) { matrixT[j][idx - 1] /= t; matrixT[j][idx] /= t; } } } } } } // Back transformation to get eigenvectors of original matrix for (int j = n - 1; j >= 0; j--) { for (int i = 0; i <= n - 1; i++) { z = 0.0; for (int k = 0; k <= FastMath.min(j, n - 1); k++) { z += matrixP[i][k] * matrixT[k][j]; } matrixP[i][j] = z; } } eigenvectors = new ArrayRealVector[n]; final double[] tmp = new double[n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { tmp[j] = matrixP[j][i]; } eigenvectors[i] = new ArrayRealVector(tmp); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy