All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.ode.ContinuousOutputModel Maven / Gradle / Ivy

Go to download

A Java's Collaborative Filtering library to carry out experiments in research of Collaborative Filtering based Recommender Systems. The library has been designed from researchers to researchers.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.ode.sampling.StepHandler;
import org.apache.commons.math3.ode.sampling.StepInterpolator;
import org.apache.commons.math3.util.FastMath;

/**
 * This class stores all information provided by an ODE integrator
 * during the integration process and build a continuous model of the
 * solution from this.
 *
 * 

This class act as a step handler from the integrator point of * view. It is called iteratively during the integration process and * stores a copy of all steps information in a sorted collection for * later use. Once the integration process is over, the user can use * the {@link #setInterpolatedTime setInterpolatedTime} and {@link * #getInterpolatedState getInterpolatedState} to retrieve this * information at any time. It is important to wait for the * integration to be over before attempting to call {@link * #setInterpolatedTime setInterpolatedTime} because some internal * variables are set only once the last step has been handled.

* *

This is useful for example if the main loop of the user * application should remain independent from the integration process * or if one needs to mimic the behaviour of an analytical model * despite a numerical model is used (i.e. one needs the ability to * get the model value at any time or to navigate through the * data).

* *

If problem modeling is done with several separate * integration phases for contiguous intervals, the same * ContinuousOutputModel can be used as step handler for all * integration phases as long as they are performed in order and in * the same direction. As an example, one can extrapolate the * trajectory of a satellite with one model (i.e. one set of * differential equations) up to the beginning of a maneuver, use * another more complex model including thrusters modeling and * accurate attitude control during the maneuver, and revert to the * first model after the end of the maneuver. If the same continuous * output model handles the steps of all integration phases, the user * do not need to bother when the maneuver begins or ends, he has all * the data available in a transparent manner.

* *

An important feature of this class is that it implements the * Serializable interface. This means that the result of * an integration can be serialized and reused later (if stored into a * persistent medium like a filesystem or a database) or elsewhere (if * sent to another application). Only the result of the integration is * stored, there is no reference to the integrated problem by * itself.

* *

One should be aware that the amount of data stored in a * ContinuousOutputModel instance can be important if the state vector * is large, if the integration interval is long or if the steps are * small (which can result from small tolerance settings in {@link * org.apache.commons.math3.ode.nonstiff.AdaptiveStepsizeIntegrator adaptive * step size integrators}).

* * @see StepHandler * @see StepInterpolator * @since 1.2 */ public class ContinuousOutputModel implements StepHandler, Serializable { /** Serializable version identifier */ private static final long serialVersionUID = -1417964919405031606L; /** Initial integration time. */ private double initialTime; /** Final integration time. */ private double finalTime; /** Integration direction indicator. */ private boolean forward; /** Current interpolator index. */ private int index; /** Steps table. */ private List steps; /** Simple constructor. * Build an empty continuous output model. */ public ContinuousOutputModel() { steps = new ArrayList(); initialTime = Double.NaN; finalTime = Double.NaN; forward = true; index = 0; } /** Append another model at the end of the instance. * @param model model to add at the end of the instance * @exception MathIllegalArgumentException if the model to append is not * compatible with the instance (dimension of the state vector, * propagation direction, hole between the dates) * @exception MaxCountExceededException if the number of functions evaluations is exceeded * during step finalization */ public void append(final ContinuousOutputModel model) throws MathIllegalArgumentException, MaxCountExceededException { if (model.steps.size() == 0) { return; } if (steps.size() == 0) { initialTime = model.initialTime; forward = model.forward; } else { if (getInterpolatedState().length != model.getInterpolatedState().length) { throw new DimensionMismatchException(model.getInterpolatedState().length, getInterpolatedState().length); } if (forward ^ model.forward) { throw new MathIllegalArgumentException(LocalizedFormats.PROPAGATION_DIRECTION_MISMATCH); } final StepInterpolator lastInterpolator = steps.get(index); final double current = lastInterpolator.getCurrentTime(); final double previous = lastInterpolator.getPreviousTime(); final double step = current - previous; final double gap = model.getInitialTime() - current; if (FastMath.abs(gap) > 1.0e-3 * FastMath.abs(step)) { throw new MathIllegalArgumentException(LocalizedFormats.HOLE_BETWEEN_MODELS_TIME_RANGES, FastMath.abs(gap)); } } for (StepInterpolator interpolator : model.steps) { steps.add(interpolator.copy()); } index = steps.size() - 1; finalTime = (steps.get(index)).getCurrentTime(); } /** {@inheritDoc} */ public void init(double t0, double[] y0, double t) { initialTime = Double.NaN; finalTime = Double.NaN; forward = true; index = 0; steps.clear(); } /** Handle the last accepted step. * A copy of the information provided by the last step is stored in * the instance for later use. * @param interpolator interpolator for the last accepted step. * @param isLast true if the step is the last one * @exception MaxCountExceededException if the number of functions evaluations is exceeded * during step finalization */ public void handleStep(final StepInterpolator interpolator, final boolean isLast) throws MaxCountExceededException { if (steps.size() == 0) { initialTime = interpolator.getPreviousTime(); forward = interpolator.isForward(); } steps.add(interpolator.copy()); if (isLast) { finalTime = interpolator.getCurrentTime(); index = steps.size() - 1; } } /** * Get the initial integration time. * @return initial integration time */ public double getInitialTime() { return initialTime; } /** * Get the final integration time. * @return final integration time */ public double getFinalTime() { return finalTime; } /** * Get the time of the interpolated point. * If {@link #setInterpolatedTime} has not been called, it returns * the final integration time. * @return interpolation point time */ public double getInterpolatedTime() { return steps.get(index).getInterpolatedTime(); } /** Set the time of the interpolated point. *

This method should not be called before the * integration is over because some internal variables are set only * once the last step has been handled.

*

Setting the time outside of the integration interval is now * allowed, but should be used with care since the accuracy of the * interpolator will probably be very poor far from this interval. * This allowance has been added to simplify implementation of search * algorithms near the interval endpoints.

*

Note that each time this method is called, the internal arrays * returned in {@link #getInterpolatedState()}, {@link * #getInterpolatedDerivatives()} and {@link #getInterpolatedSecondaryState(int)} * will be overwritten. So if their content must be preserved * across several calls, user must copy them.

* @param time time of the interpolated point * @see #getInterpolatedState() * @see #getInterpolatedDerivatives() * @see #getInterpolatedSecondaryState(int) */ public void setInterpolatedTime(final double time) { // initialize the search with the complete steps table int iMin = 0; final StepInterpolator sMin = steps.get(iMin); double tMin = 0.5 * (sMin.getPreviousTime() + sMin.getCurrentTime()); int iMax = steps.size() - 1; final StepInterpolator sMax = steps.get(iMax); double tMax = 0.5 * (sMax.getPreviousTime() + sMax.getCurrentTime()); // handle points outside of the integration interval // or in the first and last step if (locatePoint(time, sMin) <= 0) { index = iMin; sMin.setInterpolatedTime(time); return; } if (locatePoint(time, sMax) >= 0) { index = iMax; sMax.setInterpolatedTime(time); return; } // reduction of the table slice size while (iMax - iMin > 5) { // use the last estimated index as the splitting index final StepInterpolator si = steps.get(index); final int location = locatePoint(time, si); if (location < 0) { iMax = index; tMax = 0.5 * (si.getPreviousTime() + si.getCurrentTime()); } else if (location > 0) { iMin = index; tMin = 0.5 * (si.getPreviousTime() + si.getCurrentTime()); } else { // we have found the target step, no need to continue searching si.setInterpolatedTime(time); return; } // compute a new estimate of the index in the reduced table slice final int iMed = (iMin + iMax) / 2; final StepInterpolator sMed = steps.get(iMed); final double tMed = 0.5 * (sMed.getPreviousTime() + sMed.getCurrentTime()); if ((FastMath.abs(tMed - tMin) < 1e-6) || (FastMath.abs(tMax - tMed) < 1e-6)) { // too close to the bounds, we estimate using a simple dichotomy index = iMed; } else { // estimate the index using a reverse quadratic polynom // (reverse means we have i = P(t), thus allowing to simply // compute index = P(time) rather than solving a quadratic equation) final double d12 = tMax - tMed; final double d23 = tMed - tMin; final double d13 = tMax - tMin; final double dt1 = time - tMax; final double dt2 = time - tMed; final double dt3 = time - tMin; final double iLagrange = ((dt2 * dt3 * d23) * iMax - (dt1 * dt3 * d13) * iMed + (dt1 * dt2 * d12) * iMin) / (d12 * d23 * d13); index = (int) FastMath.rint(iLagrange); } // force the next size reduction to be at least one tenth final int low = FastMath.max(iMin + 1, (9 * iMin + iMax) / 10); final int high = FastMath.min(iMax - 1, (iMin + 9 * iMax) / 10); if (index < low) { index = low; } else if (index > high) { index = high; } } // now the table slice is very small, we perform an iterative search index = iMin; while ((index <= iMax) && (locatePoint(time, steps.get(index)) > 0)) { ++index; } steps.get(index).setInterpolatedTime(time); } /** * Get the state vector of the interpolated point. *

The returned vector is a reference to a reused array, so * it should not be modified and it should be copied if it needs * to be preserved across several calls to the associated * {@link #setInterpolatedTime(double)} method.

* @return state vector at time {@link #getInterpolatedTime} * @exception MaxCountExceededException if the number of functions evaluations is exceeded * @see #setInterpolatedTime(double) * @see #getInterpolatedDerivatives() * @see #getInterpolatedSecondaryState(int) * @see #getInterpolatedSecondaryDerivatives(int) */ public double[] getInterpolatedState() throws MaxCountExceededException { return steps.get(index).getInterpolatedState(); } /** * Get the derivatives of the state vector of the interpolated point. *

The returned vector is a reference to a reused array, so * it should not be modified and it should be copied if it needs * to be preserved across several calls to the associated * {@link #setInterpolatedTime(double)} method.

* @return derivatives of the state vector at time {@link #getInterpolatedTime} * @exception MaxCountExceededException if the number of functions evaluations is exceeded * @see #setInterpolatedTime(double) * @see #getInterpolatedState() * @see #getInterpolatedSecondaryState(int) * @see #getInterpolatedSecondaryDerivatives(int) * @since 3.4 */ public double[] getInterpolatedDerivatives() throws MaxCountExceededException { return steps.get(index).getInterpolatedDerivatives(); } /** Get the interpolated secondary state corresponding to the secondary equations. *

The returned vector is a reference to a reused array, so * it should not be modified and it should be copied if it needs * to be preserved across several calls to the associated * {@link #setInterpolatedTime(double)} method.

* @param secondaryStateIndex index of the secondary set, as returned by {@link * org.apache.commons.math3.ode.ExpandableStatefulODE#addSecondaryEquations( * org.apache.commons.math3.ode.SecondaryEquations) * ExpandableStatefulODE.addSecondaryEquations(SecondaryEquations)} * @return interpolated secondary state at the current interpolation date * @see #setInterpolatedTime(double) * @see #getInterpolatedState() * @see #getInterpolatedDerivatives() * @see #getInterpolatedSecondaryDerivatives(int) * @since 3.2 * @exception MaxCountExceededException if the number of functions evaluations is exceeded */ public double[] getInterpolatedSecondaryState(final int secondaryStateIndex) throws MaxCountExceededException { return steps.get(index).getInterpolatedSecondaryState(secondaryStateIndex); } /** Get the interpolated secondary derivatives corresponding to the secondary equations. *

The returned vector is a reference to a reused array, so * it should not be modified and it should be copied if it needs * to be preserved across several calls to the associated * {@link #setInterpolatedTime(double)} method.

* @param secondaryStateIndex index of the secondary set, as returned by {@link * org.apache.commons.math3.ode.ExpandableStatefulODE#addSecondaryEquations( * org.apache.commons.math3.ode.SecondaryEquations) * ExpandableStatefulODE.addSecondaryEquations(SecondaryEquations)} * @return interpolated secondary derivatives at the current interpolation date * @see #setInterpolatedTime(double) * @see #getInterpolatedState() * @see #getInterpolatedDerivatives() * @see #getInterpolatedSecondaryState(int) * @since 3.4 * @exception MaxCountExceededException if the number of functions evaluations is exceeded */ public double[] getInterpolatedSecondaryDerivatives(final int secondaryStateIndex) throws MaxCountExceededException { return steps.get(index).getInterpolatedSecondaryDerivatives(secondaryStateIndex); } /** Compare a step interval and a double. * @param time point to locate * @param interval step interval * @return -1 if the double is before the interval, 0 if it is in * the interval, and +1 if it is after the interval, according to * the interval direction */ private int locatePoint(final double time, final StepInterpolator interval) { if (forward) { if (time < interval.getPreviousTime()) { return -1; } else if (time > interval.getCurrentTime()) { return +1; } else { return 0; } } if (time > interval.getPreviousTime()) { return -1; } else if (time < interval.getCurrentTime()) { return +1; } else { return 0; } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy