All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.optim.BaseMultiStartMultivariateOptimizer Maven / Gradle / Ivy

Go to download

A Java's Collaborative Filtering library to carry out experiments in research of Collaborative Filtering based Recommender Systems. The library has been designed from researchers to researchers.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.optim;

import org.apache.commons.math3.exception.MathIllegalStateException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.TooManyEvaluationsException;
import org.apache.commons.math3.random.RandomVectorGenerator;

/**
 * Base class multi-start optimizer for a multivariate function.
 * 
* This class wraps an optimizer in order to use it several times in * turn with different starting points (trying to avoid being trapped * in a local extremum when looking for a global one). * It is not a "user" class. * * @param Type of the point/value pair returned by the optimization * algorithm. * * @since 3.0 */ public abstract class BaseMultiStartMultivariateOptimizer extends BaseMultivariateOptimizer { /** Underlying classical optimizer. */ private final BaseMultivariateOptimizer optimizer; /** Number of evaluations already performed for all starts. */ private int totalEvaluations; /** Number of starts to go. */ private int starts; /** Random generator for multi-start. */ private RandomVectorGenerator generator; /** Optimization data. */ private OptimizationData[] optimData; /** * Location in {@link #optimData} where the updated maximum * number of evaluations will be stored. */ private int maxEvalIndex = -1; /** * Location in {@link #optimData} where the updated start value * will be stored. */ private int initialGuessIndex = -1; /** * Create a multi-start optimizer from a single-start optimizer. *

* Note that if there are bounds constraints (see {@link #getLowerBound()} * and {@link #getUpperBound()}), then a simple rejection algorithm is used * at each restart. This implies that the random vector generator should have * a good probability to generate vectors in the bounded domain, otherwise the * rejection algorithm will hit the {@link #getMaxEvaluations()} count without * generating a proper restart point. Users must be take great care of the curse of dimensionality. *

* @param optimizer Single-start optimizer to wrap. * @param starts Number of starts to perform. If {@code starts == 1}, * the {@link #optimize(OptimizationData[]) optimize} will return the * same solution as the given {@code optimizer} would return. * @param generator Random vector generator to use for restarts. * @throws NotStrictlyPositiveException if {@code starts < 1}. */ public BaseMultiStartMultivariateOptimizer(final BaseMultivariateOptimizer optimizer, final int starts, final RandomVectorGenerator generator) { super(optimizer.getConvergenceChecker()); if (starts < 1) { throw new NotStrictlyPositiveException(starts); } this.optimizer = optimizer; this.starts = starts; this.generator = generator; } /** {@inheritDoc} */ @Override public int getEvaluations() { return totalEvaluations; } /** * Gets all the optima found during the last call to {@code optimize}. * The optimizer stores all the optima found during a set of * restarts. The {@code optimize} method returns the best point only. * This method returns all the points found at the end of each starts, * including the best one already returned by the {@code optimize} method. *
* The returned array as one element for each start as specified * in the constructor. It is ordered with the results from the * runs that did converge first, sorted from best to worst * objective value (i.e in ascending order if minimizing and in * descending order if maximizing), followed by {@code null} elements * corresponding to the runs that did not converge. This means all * elements will be {@code null} if the {@code optimize} method did throw * an exception. * This also means that if the first element is not {@code null}, it is * the best point found across all starts. *
* The behaviour is undefined if this method is called before * {@code optimize}; it will likely throw {@code NullPointerException}. * * @return an array containing the optima sorted from best to worst. */ public abstract PAIR[] getOptima(); /** * {@inheritDoc} * * @throws MathIllegalStateException if {@code optData} does not contain an * instance of {@link MaxEval} or {@link InitialGuess}. */ @Override public PAIR optimize(OptimizationData... optData) { // Store arguments in order to pass them to the internal optimizer. optimData = optData; // Set up base class and perform computations. return super.optimize(optData); } /** {@inheritDoc} */ @Override protected PAIR doOptimize() { // Remove all instances of "MaxEval" and "InitialGuess" from the // array that will be passed to the internal optimizer. // The former is to enforce smaller numbers of allowed evaluations // (according to how many have been used up already), and the latter // to impose a different start value for each start. for (int i = 0; i < optimData.length; i++) { if (optimData[i] instanceof MaxEval) { optimData[i] = null; maxEvalIndex = i; } if (optimData[i] instanceof InitialGuess) { optimData[i] = null; initialGuessIndex = i; continue; } } if (maxEvalIndex == -1) { throw new MathIllegalStateException(); } if (initialGuessIndex == -1) { throw new MathIllegalStateException(); } RuntimeException lastException = null; totalEvaluations = 0; clear(); final int maxEval = getMaxEvaluations(); final double[] min = getLowerBound(); final double[] max = getUpperBound(); final double[] startPoint = getStartPoint(); // Multi-start loop. for (int i = 0; i < starts; i++) { // CHECKSTYLE: stop IllegalCatch try { // Decrease number of allowed evaluations. optimData[maxEvalIndex] = new MaxEval(maxEval - totalEvaluations); // New start value. double[] s = null; if (i == 0) { s = startPoint; } else { int attempts = 0; while (s == null) { if (attempts++ >= getMaxEvaluations()) { throw new TooManyEvaluationsException(getMaxEvaluations()); } s = generator.nextVector(); for (int k = 0; s != null && k < s.length; ++k) { if ((min != null && s[k] < min[k]) || (max != null && s[k] > max[k])) { // reject the vector s = null; } } } } optimData[initialGuessIndex] = new InitialGuess(s); // Optimize. final PAIR result = optimizer.optimize(optimData); store(result); } catch (RuntimeException mue) { lastException = mue; } // CHECKSTYLE: resume IllegalCatch totalEvaluations += optimizer.getEvaluations(); } final PAIR[] optima = getOptima(); if (optima.length == 0) { // All runs failed. throw lastException; // Cannot be null if starts >= 1. } // Return the best optimum. return optima[0]; } /** * Method that will be called in order to store each found optimum. * * @param optimum Result of an optimization run. */ protected abstract void store(PAIR optimum); /** * Method that will called in order to clear all stored optima. */ protected abstract void clear(); }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy