All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.optim.univariate.MultiStartUnivariateOptimizer Maven / Gradle / Ivy

Go to download

A Java's Collaborative Filtering library to carry out experiments in research of Collaborative Filtering based Recommender Systems. The library has been designed from researchers to researchers.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.optim.univariate;

import java.util.Arrays;
import java.util.Comparator;
import org.apache.commons.math3.exception.MathIllegalStateException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.optim.MaxEval;
import org.apache.commons.math3.optim.nonlinear.scalar.GoalType;
import org.apache.commons.math3.optim.OptimizationData;

/**
 * Special implementation of the {@link UnivariateOptimizer} interface
 * adding multi-start features to an existing optimizer.
 * 
* This class wraps an optimizer in order to use it several times in * turn with different starting points (trying to avoid being trapped * in a local extremum when looking for a global one). * * @since 3.0 */ public class MultiStartUnivariateOptimizer extends UnivariateOptimizer { /** Underlying classical optimizer. */ private final UnivariateOptimizer optimizer; /** Number of evaluations already performed for all starts. */ private int totalEvaluations; /** Number of starts to go. */ private int starts; /** Random generator for multi-start. */ private RandomGenerator generator; /** Found optima. */ private UnivariatePointValuePair[] optima; /** Optimization data. */ private OptimizationData[] optimData; /** * Location in {@link #optimData} where the updated maximum * number of evaluations will be stored. */ private int maxEvalIndex = -1; /** * Location in {@link #optimData} where the updated start value * will be stored. */ private int searchIntervalIndex = -1; /** * Create a multi-start optimizer from a single-start optimizer. * * @param optimizer Single-start optimizer to wrap. * @param starts Number of starts to perform. If {@code starts == 1}, * the {@code optimize} methods will return the same solution as * {@code optimizer} would. * @param generator Random generator to use for restarts. * @throws NotStrictlyPositiveException if {@code starts < 1}. */ public MultiStartUnivariateOptimizer(final UnivariateOptimizer optimizer, final int starts, final RandomGenerator generator) { super(optimizer.getConvergenceChecker()); if (starts < 1) { throw new NotStrictlyPositiveException(starts); } this.optimizer = optimizer; this.starts = starts; this.generator = generator; } /** {@inheritDoc} */ @Override public int getEvaluations() { return totalEvaluations; } /** * Gets all the optima found during the last call to {@code optimize}. * The optimizer stores all the optima found during a set of * restarts. The {@code optimize} method returns the best point only. * This method returns all the points found at the end of each starts, * including the best one already returned by the {@code optimize} method. *
* The returned array as one element for each start as specified * in the constructor. It is ordered with the results from the * runs that did converge first, sorted from best to worst * objective value (i.e in ascending order if minimizing and in * descending order if maximizing), followed by {@code null} elements * corresponding to the runs that did not converge. This means all * elements will be {@code null} if the {@code optimize} method did throw * an exception. * This also means that if the first element is not {@code null}, it is * the best point found across all starts. * * @return an array containing the optima. * @throws MathIllegalStateException if {@link #optimize(OptimizationData[]) * optimize} has not been called. */ public UnivariatePointValuePair[] getOptima() { if (optima == null) { throw new MathIllegalStateException(LocalizedFormats.NO_OPTIMUM_COMPUTED_YET); } return optima.clone(); } /** * {@inheritDoc} * * @throws MathIllegalStateException if {@code optData} does not contain an * instance of {@link MaxEval} or {@link SearchInterval}. */ @Override public UnivariatePointValuePair optimize(OptimizationData... optData) { // Store arguments in order to pass them to the internal optimizer. optimData = optData; // Set up base class and perform computations. return super.optimize(optData); } /** {@inheritDoc} */ @Override protected UnivariatePointValuePair doOptimize() { // Remove all instances of "MaxEval" and "SearchInterval" from the // array that will be passed to the internal optimizer. // The former is to enforce smaller numbers of allowed evaluations // (according to how many have been used up already), and the latter // to impose a different start value for each start. for (int i = 0; i < optimData.length; i++) { if (optimData[i] instanceof MaxEval) { optimData[i] = null; maxEvalIndex = i; continue; } if (optimData[i] instanceof SearchInterval) { optimData[i] = null; searchIntervalIndex = i; continue; } } if (maxEvalIndex == -1) { throw new MathIllegalStateException(); } if (searchIntervalIndex == -1) { throw new MathIllegalStateException(); } RuntimeException lastException = null; optima = new UnivariatePointValuePair[starts]; totalEvaluations = 0; final int maxEval = getMaxEvaluations(); final double min = getMin(); final double max = getMax(); final double startValue = getStartValue(); // Multi-start loop. for (int i = 0; i < starts; i++) { // CHECKSTYLE: stop IllegalCatch try { // Decrease number of allowed evaluations. optimData[maxEvalIndex] = new MaxEval(maxEval - totalEvaluations); // New start value. final double s = (i == 0) ? startValue : min + generator.nextDouble() * (max - min); optimData[searchIntervalIndex] = new SearchInterval(min, max, s); // Optimize. optima[i] = optimizer.optimize(optimData); } catch (RuntimeException mue) { lastException = mue; optima[i] = null; } // CHECKSTYLE: resume IllegalCatch totalEvaluations += optimizer.getEvaluations(); } sortPairs(getGoalType()); if (optima[0] == null) { throw lastException; // Cannot be null if starts >= 1. } // Return the point with the best objective function value. return optima[0]; } /** * Sort the optima from best to worst, followed by {@code null} elements. * * @param goal Goal type. */ private void sortPairs(final GoalType goal) { Arrays.sort(optima, new Comparator() { /** {@inheritDoc} */ public int compare(final UnivariatePointValuePair o1, final UnivariatePointValuePair o2) { if (o1 == null) { return (o2 == null) ? 0 : 1; } else if (o2 == null) { return -1; } final double v1 = o1.getValue(); final double v2 = o2.getValue(); return (goal == GoalType.MINIMIZE) ? Double.compare(v1, v2) : Double.compare(v2, v1); } }); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy