All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.optimization.direct.AbstractSimplex Maven / Gradle / Ivy

Go to download

A Java's Collaborative Filtering library to carry out experiments in research of Collaborative Filtering based Recommender Systems. The library has been designed from researchers to researchers.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.optimization.direct;

import java.util.Arrays;
import java.util.Comparator;

import org.apache.commons.math3.analysis.MultivariateFunction;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.ZeroException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.optimization.PointValuePair;
import org.apache.commons.math3.optimization.OptimizationData;

/**
 * This class implements the simplex concept.
 * It is intended to be used in conjunction with {@link SimplexOptimizer}.
 * 
* The initial configuration of the simplex is set by the constructors * {@link #AbstractSimplex(double[])} or {@link #AbstractSimplex(double[][])}. * The other {@link #AbstractSimplex(int) constructor} will set all steps * to 1, thus building a default configuration from a unit hypercube. *
* Users must call the {@link #build(double[]) build} method in order * to create the data structure that will be acted on by the other methods of * this class. * * @see SimplexOptimizer * @deprecated As of 3.1 (to be removed in 4.0). * @since 3.0 */ @Deprecated public abstract class AbstractSimplex implements OptimizationData { /** Simplex. */ private PointValuePair[] simplex; /** Start simplex configuration. */ private double[][] startConfiguration; /** Simplex dimension (must be equal to {@code simplex.length - 1}). */ private final int dimension; /** * Build a unit hypercube simplex. * * @param n Dimension of the simplex. */ protected AbstractSimplex(int n) { this(n, 1d); } /** * Build a hypercube simplex with the given side length. * * @param n Dimension of the simplex. * @param sideLength Length of the sides of the hypercube. */ protected AbstractSimplex(int n, double sideLength) { this(createHypercubeSteps(n, sideLength)); } /** * The start configuration for simplex is built from a box parallel to * the canonical axes of the space. The simplex is the subset of vertices * of a box parallel to the canonical axes. It is built as the path followed * while traveling from one vertex of the box to the diagonally opposite * vertex moving only along the box edges. The first vertex of the box will * be located at the start point of the optimization. * As an example, in dimension 3 a simplex has 4 vertices. Setting the * steps to (1, 10, 2) and the start point to (1, 1, 1) would imply the * start simplex would be: { (1, 1, 1), (2, 1, 1), (2, 11, 1), (2, 11, 3) }. * The first vertex would be set to the start point at (1, 1, 1) and the * last vertex would be set to the diagonally opposite vertex at (2, 11, 3). * * @param steps Steps along the canonical axes representing box edges. They * may be negative but not zero. * @throws NullArgumentException if {@code steps} is {@code null}. * @throws ZeroException if one of the steps is zero. */ protected AbstractSimplex(final double[] steps) { if (steps == null) { throw new NullArgumentException(); } if (steps.length == 0) { throw new ZeroException(); } dimension = steps.length; // Only the relative position of the n final vertices with respect // to the first one are stored. startConfiguration = new double[dimension][dimension]; for (int i = 0; i < dimension; i++) { final double[] vertexI = startConfiguration[i]; for (int j = 0; j < i + 1; j++) { if (steps[j] == 0) { throw new ZeroException(LocalizedFormats.EQUAL_VERTICES_IN_SIMPLEX); } System.arraycopy(steps, 0, vertexI, 0, j + 1); } } } /** * The real initial simplex will be set up by moving the reference * simplex such that its first point is located at the start point of the * optimization. * * @param referenceSimplex Reference simplex. * @throws NotStrictlyPositiveException if the reference simplex does not * contain at least one point. * @throws DimensionMismatchException if there is a dimension mismatch * in the reference simplex. * @throws IllegalArgumentException if one of its vertices is duplicated. */ protected AbstractSimplex(final double[][] referenceSimplex) { if (referenceSimplex.length <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.SIMPLEX_NEED_ONE_POINT, referenceSimplex.length); } dimension = referenceSimplex.length - 1; // Only the relative position of the n final vertices with respect // to the first one are stored. startConfiguration = new double[dimension][dimension]; final double[] ref0 = referenceSimplex[0]; // Loop over vertices. for (int i = 0; i < referenceSimplex.length; i++) { final double[] refI = referenceSimplex[i]; // Safety checks. if (refI.length != dimension) { throw new DimensionMismatchException(refI.length, dimension); } for (int j = 0; j < i; j++) { final double[] refJ = referenceSimplex[j]; boolean allEquals = true; for (int k = 0; k < dimension; k++) { if (refI[k] != refJ[k]) { allEquals = false; break; } } if (allEquals) { throw new MathIllegalArgumentException(LocalizedFormats.EQUAL_VERTICES_IN_SIMPLEX, i, j); } } // Store vertex i position relative to vertex 0 position. if (i > 0) { final double[] confI = startConfiguration[i - 1]; for (int k = 0; k < dimension; k++) { confI[k] = refI[k] - ref0[k]; } } } } /** * Get simplex dimension. * * @return the dimension of the simplex. */ public int getDimension() { return dimension; } /** * Get simplex size. * After calling the {@link #build(double[]) build} method, this method will * will be equivalent to {@code getDimension() + 1}. * * @return the size of the simplex. */ public int getSize() { return simplex.length; } /** * Compute the next simplex of the algorithm. * * @param evaluationFunction Evaluation function. * @param comparator Comparator to use to sort simplex vertices from best * to worst. * @throws org.apache.commons.math3.exception.TooManyEvaluationsException * if the algorithm fails to converge. */ public abstract void iterate(final MultivariateFunction evaluationFunction, final Comparator comparator); /** * Build an initial simplex. * * @param startPoint First point of the simplex. * @throws DimensionMismatchException if the start point does not match * simplex dimension. */ public void build(final double[] startPoint) { if (dimension != startPoint.length) { throw new DimensionMismatchException(dimension, startPoint.length); } // Set first vertex. simplex = new PointValuePair[dimension + 1]; simplex[0] = new PointValuePair(startPoint, Double.NaN); // Set remaining vertices. for (int i = 0; i < dimension; i++) { final double[] confI = startConfiguration[i]; final double[] vertexI = new double[dimension]; for (int k = 0; k < dimension; k++) { vertexI[k] = startPoint[k] + confI[k]; } simplex[i + 1] = new PointValuePair(vertexI, Double.NaN); } } /** * Evaluate all the non-evaluated points of the simplex. * * @param evaluationFunction Evaluation function. * @param comparator Comparator to use to sort simplex vertices from best to worst. * @throws org.apache.commons.math3.exception.TooManyEvaluationsException * if the maximal number of evaluations is exceeded. */ public void evaluate(final MultivariateFunction evaluationFunction, final Comparator comparator) { // Evaluate the objective function at all non-evaluated simplex points. for (int i = 0; i < simplex.length; i++) { final PointValuePair vertex = simplex[i]; final double[] point = vertex.getPointRef(); if (Double.isNaN(vertex.getValue())) { simplex[i] = new PointValuePair(point, evaluationFunction.value(point), false); } } // Sort the simplex from best to worst. Arrays.sort(simplex, comparator); } /** * Replace the worst point of the simplex by a new point. * * @param pointValuePair Point to insert. * @param comparator Comparator to use for sorting the simplex vertices * from best to worst. */ protected void replaceWorstPoint(PointValuePair pointValuePair, final Comparator comparator) { for (int i = 0; i < dimension; i++) { if (comparator.compare(simplex[i], pointValuePair) > 0) { PointValuePair tmp = simplex[i]; simplex[i] = pointValuePair; pointValuePair = tmp; } } simplex[dimension] = pointValuePair; } /** * Get the points of the simplex. * * @return all the simplex points. */ public PointValuePair[] getPoints() { final PointValuePair[] copy = new PointValuePair[simplex.length]; System.arraycopy(simplex, 0, copy, 0, simplex.length); return copy; } /** * Get the simplex point stored at the requested {@code index}. * * @param index Location. * @return the point at location {@code index}. */ public PointValuePair getPoint(int index) { if (index < 0 || index >= simplex.length) { throw new OutOfRangeException(index, 0, simplex.length - 1); } return simplex[index]; } /** * Store a new point at location {@code index}. * Note that no deep-copy of {@code point} is performed. * * @param index Location. * @param point New value. */ protected void setPoint(int index, PointValuePair point) { if (index < 0 || index >= simplex.length) { throw new OutOfRangeException(index, 0, simplex.length - 1); } simplex[index] = point; } /** * Replace all points. * Note that no deep-copy of {@code points} is performed. * * @param points New Points. */ protected void setPoints(PointValuePair[] points) { if (points.length != simplex.length) { throw new DimensionMismatchException(points.length, simplex.length); } simplex = points; } /** * Create steps for a unit hypercube. * * @param n Dimension of the hypercube. * @param sideLength Length of the sides of the hypercube. * @return the steps. */ private static double[] createHypercubeSteps(int n, double sideLength) { final double[] steps = new double[n]; for (int i = 0; i < n; i++) { steps[i] = sideLength; } return steps; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy