org.apache.commons.math3.optimization.direct.AbstractSimplex Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cf4j-recsys Show documentation
Show all versions of cf4j-recsys Show documentation
A Java's Collaborative Filtering library to carry out experiments in research of Collaborative Filtering based Recommender Systems. The library has been designed from researchers to researchers.
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.optimization.direct;
import java.util.Arrays;
import java.util.Comparator;
import org.apache.commons.math3.analysis.MultivariateFunction;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.ZeroException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.optimization.PointValuePair;
import org.apache.commons.math3.optimization.OptimizationData;
/**
* This class implements the simplex concept.
* It is intended to be used in conjunction with {@link SimplexOptimizer}.
*
* The initial configuration of the simplex is set by the constructors
* {@link #AbstractSimplex(double[])} or {@link #AbstractSimplex(double[][])}.
* The other {@link #AbstractSimplex(int) constructor} will set all steps
* to 1, thus building a default configuration from a unit hypercube.
*
* Users must call the {@link #build(double[]) build} method in order
* to create the data structure that will be acted on by the other methods of
* this class.
*
* @see SimplexOptimizer
* @deprecated As of 3.1 (to be removed in 4.0).
* @since 3.0
*/
@Deprecated
public abstract class AbstractSimplex implements OptimizationData {
/** Simplex. */
private PointValuePair[] simplex;
/** Start simplex configuration. */
private double[][] startConfiguration;
/** Simplex dimension (must be equal to {@code simplex.length - 1}). */
private final int dimension;
/**
* Build a unit hypercube simplex.
*
* @param n Dimension of the simplex.
*/
protected AbstractSimplex(int n) {
this(n, 1d);
}
/**
* Build a hypercube simplex with the given side length.
*
* @param n Dimension of the simplex.
* @param sideLength Length of the sides of the hypercube.
*/
protected AbstractSimplex(int n,
double sideLength) {
this(createHypercubeSteps(n, sideLength));
}
/**
* The start configuration for simplex is built from a box parallel to
* the canonical axes of the space. The simplex is the subset of vertices
* of a box parallel to the canonical axes. It is built as the path followed
* while traveling from one vertex of the box to the diagonally opposite
* vertex moving only along the box edges. The first vertex of the box will
* be located at the start point of the optimization.
* As an example, in dimension 3 a simplex has 4 vertices. Setting the
* steps to (1, 10, 2) and the start point to (1, 1, 1) would imply the
* start simplex would be: { (1, 1, 1), (2, 1, 1), (2, 11, 1), (2, 11, 3) }.
* The first vertex would be set to the start point at (1, 1, 1) and the
* last vertex would be set to the diagonally opposite vertex at (2, 11, 3).
*
* @param steps Steps along the canonical axes representing box edges. They
* may be negative but not zero.
* @throws NullArgumentException if {@code steps} is {@code null}.
* @throws ZeroException if one of the steps is zero.
*/
protected AbstractSimplex(final double[] steps) {
if (steps == null) {
throw new NullArgumentException();
}
if (steps.length == 0) {
throw new ZeroException();
}
dimension = steps.length;
// Only the relative position of the n final vertices with respect
// to the first one are stored.
startConfiguration = new double[dimension][dimension];
for (int i = 0; i < dimension; i++) {
final double[] vertexI = startConfiguration[i];
for (int j = 0; j < i + 1; j++) {
if (steps[j] == 0) {
throw new ZeroException(LocalizedFormats.EQUAL_VERTICES_IN_SIMPLEX);
}
System.arraycopy(steps, 0, vertexI, 0, j + 1);
}
}
}
/**
* The real initial simplex will be set up by moving the reference
* simplex such that its first point is located at the start point of the
* optimization.
*
* @param referenceSimplex Reference simplex.
* @throws NotStrictlyPositiveException if the reference simplex does not
* contain at least one point.
* @throws DimensionMismatchException if there is a dimension mismatch
* in the reference simplex.
* @throws IllegalArgumentException if one of its vertices is duplicated.
*/
protected AbstractSimplex(final double[][] referenceSimplex) {
if (referenceSimplex.length <= 0) {
throw new NotStrictlyPositiveException(LocalizedFormats.SIMPLEX_NEED_ONE_POINT,
referenceSimplex.length);
}
dimension = referenceSimplex.length - 1;
// Only the relative position of the n final vertices with respect
// to the first one are stored.
startConfiguration = new double[dimension][dimension];
final double[] ref0 = referenceSimplex[0];
// Loop over vertices.
for (int i = 0; i < referenceSimplex.length; i++) {
final double[] refI = referenceSimplex[i];
// Safety checks.
if (refI.length != dimension) {
throw new DimensionMismatchException(refI.length, dimension);
}
for (int j = 0; j < i; j++) {
final double[] refJ = referenceSimplex[j];
boolean allEquals = true;
for (int k = 0; k < dimension; k++) {
if (refI[k] != refJ[k]) {
allEquals = false;
break;
}
}
if (allEquals) {
throw new MathIllegalArgumentException(LocalizedFormats.EQUAL_VERTICES_IN_SIMPLEX,
i, j);
}
}
// Store vertex i position relative to vertex 0 position.
if (i > 0) {
final double[] confI = startConfiguration[i - 1];
for (int k = 0; k < dimension; k++) {
confI[k] = refI[k] - ref0[k];
}
}
}
}
/**
* Get simplex dimension.
*
* @return the dimension of the simplex.
*/
public int getDimension() {
return dimension;
}
/**
* Get simplex size.
* After calling the {@link #build(double[]) build} method, this method will
* will be equivalent to {@code getDimension() + 1}.
*
* @return the size of the simplex.
*/
public int getSize() {
return simplex.length;
}
/**
* Compute the next simplex of the algorithm.
*
* @param evaluationFunction Evaluation function.
* @param comparator Comparator to use to sort simplex vertices from best
* to worst.
* @throws org.apache.commons.math3.exception.TooManyEvaluationsException
* if the algorithm fails to converge.
*/
public abstract void iterate(final MultivariateFunction evaluationFunction,
final Comparator comparator);
/**
* Build an initial simplex.
*
* @param startPoint First point of the simplex.
* @throws DimensionMismatchException if the start point does not match
* simplex dimension.
*/
public void build(final double[] startPoint) {
if (dimension != startPoint.length) {
throw new DimensionMismatchException(dimension, startPoint.length);
}
// Set first vertex.
simplex = new PointValuePair[dimension + 1];
simplex[0] = new PointValuePair(startPoint, Double.NaN);
// Set remaining vertices.
for (int i = 0; i < dimension; i++) {
final double[] confI = startConfiguration[i];
final double[] vertexI = new double[dimension];
for (int k = 0; k < dimension; k++) {
vertexI[k] = startPoint[k] + confI[k];
}
simplex[i + 1] = new PointValuePair(vertexI, Double.NaN);
}
}
/**
* Evaluate all the non-evaluated points of the simplex.
*
* @param evaluationFunction Evaluation function.
* @param comparator Comparator to use to sort simplex vertices from best to worst.
* @throws org.apache.commons.math3.exception.TooManyEvaluationsException
* if the maximal number of evaluations is exceeded.
*/
public void evaluate(final MultivariateFunction evaluationFunction,
final Comparator comparator) {
// Evaluate the objective function at all non-evaluated simplex points.
for (int i = 0; i < simplex.length; i++) {
final PointValuePair vertex = simplex[i];
final double[] point = vertex.getPointRef();
if (Double.isNaN(vertex.getValue())) {
simplex[i] = new PointValuePair(point, evaluationFunction.value(point), false);
}
}
// Sort the simplex from best to worst.
Arrays.sort(simplex, comparator);
}
/**
* Replace the worst point of the simplex by a new point.
*
* @param pointValuePair Point to insert.
* @param comparator Comparator to use for sorting the simplex vertices
* from best to worst.
*/
protected void replaceWorstPoint(PointValuePair pointValuePair,
final Comparator comparator) {
for (int i = 0; i < dimension; i++) {
if (comparator.compare(simplex[i], pointValuePair) > 0) {
PointValuePair tmp = simplex[i];
simplex[i] = pointValuePair;
pointValuePair = tmp;
}
}
simplex[dimension] = pointValuePair;
}
/**
* Get the points of the simplex.
*
* @return all the simplex points.
*/
public PointValuePair[] getPoints() {
final PointValuePair[] copy = new PointValuePair[simplex.length];
System.arraycopy(simplex, 0, copy, 0, simplex.length);
return copy;
}
/**
* Get the simplex point stored at the requested {@code index}.
*
* @param index Location.
* @return the point at location {@code index}.
*/
public PointValuePair getPoint(int index) {
if (index < 0 ||
index >= simplex.length) {
throw new OutOfRangeException(index, 0, simplex.length - 1);
}
return simplex[index];
}
/**
* Store a new point at location {@code index}.
* Note that no deep-copy of {@code point} is performed.
*
* @param index Location.
* @param point New value.
*/
protected void setPoint(int index, PointValuePair point) {
if (index < 0 ||
index >= simplex.length) {
throw new OutOfRangeException(index, 0, simplex.length - 1);
}
simplex[index] = point;
}
/**
* Replace all points.
* Note that no deep-copy of {@code points} is performed.
*
* @param points New Points.
*/
protected void setPoints(PointValuePair[] points) {
if (points.length != simplex.length) {
throw new DimensionMismatchException(points.length, simplex.length);
}
simplex = points;
}
/**
* Create steps for a unit hypercube.
*
* @param n Dimension of the hypercube.
* @param sideLength Length of the sides of the hypercube.
* @return the steps.
*/
private static double[] createHypercubeSteps(int n,
double sideLength) {
final double[] steps = new double[n];
for (int i = 0; i < n; i++) {
steps[i] = sideLength;
}
return steps;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy