org.apache.commons.math3.optimization.univariate.BracketFinder Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cf4j-recsys Show documentation
Show all versions of cf4j-recsys Show documentation
A Java's Collaborative Filtering library to carry out experiments in research of Collaborative Filtering based Recommender Systems. The library has been designed from researchers to researchers.
The newest version!
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.optimization.univariate;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.Incrementor;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.TooManyEvaluationsException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.optimization.GoalType;
/**
* Provide an interval that brackets a local optimum of a function.
* This code is based on a Python implementation (from SciPy,
* module {@code optimize.py} v0.5).
*
* @deprecated As of 3.1 (to be removed in 4.0).
* @since 2.2
*/
@Deprecated
public class BracketFinder {
/** Tolerance to avoid division by zero. */
private static final double EPS_MIN = 1e-21;
/**
* Golden section.
*/
private static final double GOLD = 1.618034;
/**
* Factor for expanding the interval.
*/
private final double growLimit;
/**
* Counter for function evaluations.
*/
private final Incrementor evaluations = new Incrementor();
/**
* Lower bound of the bracket.
*/
private double lo;
/**
* Higher bound of the bracket.
*/
private double hi;
/**
* Point inside the bracket.
*/
private double mid;
/**
* Function value at {@link #lo}.
*/
private double fLo;
/**
* Function value at {@link #hi}.
*/
private double fHi;
/**
* Function value at {@link #mid}.
*/
private double fMid;
/**
* Constructor with default values {@code 100, 50} (see the
* {@link #BracketFinder(double,int) other constructor}).
*/
public BracketFinder() {
this(100, 50);
}
/**
* Create a bracketing interval finder.
*
* @param growLimit Expanding factor.
* @param maxEvaluations Maximum number of evaluations allowed for finding
* a bracketing interval.
*/
public BracketFinder(double growLimit,
int maxEvaluations) {
if (growLimit <= 0) {
throw new NotStrictlyPositiveException(growLimit);
}
if (maxEvaluations <= 0) {
throw new NotStrictlyPositiveException(maxEvaluations);
}
this.growLimit = growLimit;
evaluations.setMaximalCount(maxEvaluations);
}
/**
* Search new points that bracket a local optimum of the function.
*
* @param func Function whose optimum should be bracketed.
* @param goal {@link GoalType Goal type}.
* @param xA Initial point.
* @param xB Initial point.
* @throws TooManyEvaluationsException if the maximum number of evaluations
* is exceeded.
*/
public void search(UnivariateFunction func, GoalType goal, double xA, double xB) {
evaluations.resetCount();
final boolean isMinim = goal == GoalType.MINIMIZE;
double fA = eval(func, xA);
double fB = eval(func, xB);
if (isMinim ?
fA < fB :
fA > fB) {
double tmp = xA;
xA = xB;
xB = tmp;
tmp = fA;
fA = fB;
fB = tmp;
}
double xC = xB + GOLD * (xB - xA);
double fC = eval(func, xC);
while (isMinim ? fC < fB : fC > fB) {
double tmp1 = (xB - xA) * (fB - fC);
double tmp2 = (xB - xC) * (fB - fA);
double val = tmp2 - tmp1;
double denom = FastMath.abs(val) < EPS_MIN ? 2 * EPS_MIN : 2 * val;
double w = xB - ((xB - xC) * tmp2 - (xB - xA) * tmp1) / denom;
double wLim = xB + growLimit * (xC - xB);
double fW;
if ((w - xC) * (xB - w) > 0) {
fW = eval(func, w);
if (isMinim ?
fW < fC :
fW > fC) {
xA = xB;
xB = w;
fA = fB;
fB = fW;
break;
} else if (isMinim ?
fW > fB :
fW < fB) {
xC = w;
fC = fW;
break;
}
w = xC + GOLD * (xC - xB);
fW = eval(func, w);
} else if ((w - wLim) * (wLim - xC) >= 0) {
w = wLim;
fW = eval(func, w);
} else if ((w - wLim) * (xC - w) > 0) {
fW = eval(func, w);
if (isMinim ?
fW < fC :
fW > fC) {
xB = xC;
xC = w;
w = xC + GOLD * (xC - xB);
fB = fC;
fC =fW;
fW = eval(func, w);
}
} else {
w = xC + GOLD * (xC - xB);
fW = eval(func, w);
}
xA = xB;
fA = fB;
xB = xC;
fB = fC;
xC = w;
fC = fW;
}
lo = xA;
fLo = fA;
mid = xB;
fMid = fB;
hi = xC;
fHi = fC;
if (lo > hi) {
double tmp = lo;
lo = hi;
hi = tmp;
tmp = fLo;
fLo = fHi;
fHi = tmp;
}
}
/**
* @return the number of evalutations.
*/
public int getMaxEvaluations() {
return evaluations.getMaximalCount();
}
/**
* @return the number of evalutations.
*/
public int getEvaluations() {
return evaluations.getCount();
}
/**
* @return the lower bound of the bracket.
* @see #getFLo()
*/
public double getLo() {
return lo;
}
/**
* Get function value at {@link #getLo()}.
* @return function value at {@link #getLo()}
*/
public double getFLo() {
return fLo;
}
/**
* @return the higher bound of the bracket.
* @see #getFHi()
*/
public double getHi() {
return hi;
}
/**
* Get function value at {@link #getHi()}.
* @return function value at {@link #getHi()}
*/
public double getFHi() {
return fHi;
}
/**
* @return a point in the middle of the bracket.
* @see #getFMid()
*/
public double getMid() {
return mid;
}
/**
* Get function value at {@link #getMid()}.
* @return function value at {@link #getMid()}
*/
public double getFMid() {
return fMid;
}
/**
* @param f Function.
* @param x Argument.
* @return {@code f(x)}
* @throws TooManyEvaluationsException if the maximal number of evaluations is
* exceeded.
*/
private double eval(UnivariateFunction f, double x) {
try {
evaluations.incrementCount();
} catch (MaxCountExceededException e) {
throw new TooManyEvaluationsException(e.getMax());
}
return f.value(x);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy