All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.stat.StatUtils Maven / Gradle / Ivy

Go to download

A Java's Collaborative Filtering library to carry out experiments in research of Collaborative Filtering based Recommender Systems. The library has been designed from researchers to researchers.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.stat;

import java.util.List;

import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.NotPositiveException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.NoDataException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.stat.descriptive.DescriptiveStatistics;
import org.apache.commons.math3.stat.descriptive.UnivariateStatistic;
import org.apache.commons.math3.stat.descriptive.moment.GeometricMean;
import org.apache.commons.math3.stat.descriptive.moment.Mean;
import org.apache.commons.math3.stat.descriptive.moment.Variance;
import org.apache.commons.math3.stat.descriptive.rank.Max;
import org.apache.commons.math3.stat.descriptive.rank.Min;
import org.apache.commons.math3.stat.descriptive.rank.Percentile;
import org.apache.commons.math3.stat.descriptive.summary.Product;
import org.apache.commons.math3.stat.descriptive.summary.Sum;
import org.apache.commons.math3.stat.descriptive.summary.SumOfLogs;
import org.apache.commons.math3.stat.descriptive.summary.SumOfSquares;

/**
 * StatUtils provides static methods for computing statistics based on data
 * stored in double[] arrays.
 *
 */
public final class StatUtils {

    /** sum */
    private static final UnivariateStatistic SUM = new Sum();

    /** sumSq */
    private static final UnivariateStatistic SUM_OF_SQUARES = new SumOfSquares();

    /** prod */
    private static final UnivariateStatistic PRODUCT = new Product();

    /** sumLog */
    private static final UnivariateStatistic SUM_OF_LOGS = new SumOfLogs();

    /** min */
    private static final UnivariateStatistic MIN = new Min();

    /** max */
    private static final UnivariateStatistic MAX = new Max();

    /** mean */
    private static final UnivariateStatistic MEAN = new Mean();

    /** variance */
    private static final Variance VARIANCE = new Variance();

    /** percentile */
    private static final Percentile PERCENTILE = new Percentile();

    /** geometric mean */
    private static final GeometricMean GEOMETRIC_MEAN = new GeometricMean();

    /**
     * Private Constructor
     */
    private StatUtils() {
    }

    /**
     * Returns the sum of the values in the input array, or
     * Double.NaN if the array is empty.
     * 

* Throws IllegalArgumentException if the input array * is null.

* * @param values array of values to sum * @return the sum of the values or Double.NaN if the array * is empty * @throws MathIllegalArgumentException if the array is null */ public static double sum(final double[] values) throws MathIllegalArgumentException { return SUM.evaluate(values); } /** * Returns the sum of the entries in the specified portion of * the input array, or Double.NaN if the designated subarray * is empty. *

* Throws IllegalArgumentException if the array is null.

* * @param values the input array * @param begin index of the first array element to include * @param length the number of elements to include * @return the sum of the values or Double.NaN if length = 0 * @throws MathIllegalArgumentException if the array is null or the array index * parameters are not valid */ public static double sum(final double[] values, final int begin, final int length) throws MathIllegalArgumentException { return SUM.evaluate(values, begin, length); } /** * Returns the sum of the squares of the entries in the input array, or * Double.NaN if the array is empty. *

* Throws IllegalArgumentException if the array is null.

* * @param values input array * @return the sum of the squared values or Double.NaN if the * array is empty * @throws MathIllegalArgumentException if the array is null */ public static double sumSq(final double[] values) throws MathIllegalArgumentException { return SUM_OF_SQUARES.evaluate(values); } /** * Returns the sum of the squares of the entries in the specified portion of * the input array, or Double.NaN if the designated subarray * is empty. *

* Throws IllegalArgumentException if the array is null.

* * @param values the input array * @param begin index of the first array element to include * @param length the number of elements to include * @return the sum of the squares of the values or Double.NaN if length = 0 * @throws MathIllegalArgumentException if the array is null or the array index * parameters are not valid */ public static double sumSq(final double[] values, final int begin, final int length) throws MathIllegalArgumentException { return SUM_OF_SQUARES.evaluate(values, begin, length); } /** * Returns the product of the entries in the input array, or * Double.NaN if the array is empty. *

* Throws IllegalArgumentException if the array is null.

* * @param values the input array * @return the product of the values or Double.NaN if the array is empty * @throws MathIllegalArgumentException if the array is null */ public static double product(final double[] values) throws MathIllegalArgumentException { return PRODUCT.evaluate(values); } /** * Returns the product of the entries in the specified portion of * the input array, or Double.NaN if the designated subarray * is empty. *

* Throws IllegalArgumentException if the array is null.

* * @param values the input array * @param begin index of the first array element to include * @param length the number of elements to include * @return the product of the values or Double.NaN if length = 0 * @throws MathIllegalArgumentException if the array is null or the array index * parameters are not valid */ public static double product(final double[] values, final int begin, final int length) throws MathIllegalArgumentException { return PRODUCT.evaluate(values, begin, length); } /** * Returns the sum of the natural logs of the entries in the input array, or * Double.NaN if the array is empty. *

* Throws IllegalArgumentException if the array is null.

*

* See {@link org.apache.commons.math3.stat.descriptive.summary.SumOfLogs}. *

* * @param values the input array * @return the sum of the natural logs of the values or Double.NaN if * the array is empty * @throws MathIllegalArgumentException if the array is null */ public static double sumLog(final double[] values) throws MathIllegalArgumentException { return SUM_OF_LOGS.evaluate(values); } /** * Returns the sum of the natural logs of the entries in the specified portion of * the input array, or Double.NaN if the designated subarray * is empty. *

* Throws IllegalArgumentException if the array is null.

*

* See {@link org.apache.commons.math3.stat.descriptive.summary.SumOfLogs}. *

* * @param values the input array * @param begin index of the first array element to include * @param length the number of elements to include * @return the sum of the natural logs of the values or Double.NaN if * length = 0 * @throws MathIllegalArgumentException if the array is null or the array index * parameters are not valid */ public static double sumLog(final double[] values, final int begin, final int length) throws MathIllegalArgumentException { return SUM_OF_LOGS.evaluate(values, begin, length); } /** * Returns the arithmetic mean of the entries in the input array, or * Double.NaN if the array is empty. *

* Throws IllegalArgumentException if the array is null.

*

* See {@link org.apache.commons.math3.stat.descriptive.moment.Mean} for * details on the computing algorithm.

* * @param values the input array * @return the mean of the values or Double.NaN if the array is empty * @throws MathIllegalArgumentException if the array is null */ public static double mean(final double[] values) throws MathIllegalArgumentException { return MEAN.evaluate(values); } /** * Returns the arithmetic mean of the entries in the specified portion of * the input array, or Double.NaN if the designated subarray * is empty. *

* Throws IllegalArgumentException if the array is null.

*

* See {@link org.apache.commons.math3.stat.descriptive.moment.Mean} for * details on the computing algorithm.

* * @param values the input array * @param begin index of the first array element to include * @param length the number of elements to include * @return the mean of the values or Double.NaN if length = 0 * @throws MathIllegalArgumentException if the array is null or the array index * parameters are not valid */ public static double mean(final double[] values, final int begin, final int length) throws MathIllegalArgumentException { return MEAN.evaluate(values, begin, length); } /** * Returns the geometric mean of the entries in the input array, or * Double.NaN if the array is empty. *

* Throws IllegalArgumentException if the array is null.

*

* See {@link org.apache.commons.math3.stat.descriptive.moment.GeometricMean} * for details on the computing algorithm.

* * @param values the input array * @return the geometric mean of the values or Double.NaN if the array is empty * @throws MathIllegalArgumentException if the array is null */ public static double geometricMean(final double[] values) throws MathIllegalArgumentException { return GEOMETRIC_MEAN.evaluate(values); } /** * Returns the geometric mean of the entries in the specified portion of * the input array, or Double.NaN if the designated subarray * is empty. *

* Throws IllegalArgumentException if the array is null.

*

* See {@link org.apache.commons.math3.stat.descriptive.moment.GeometricMean} * for details on the computing algorithm.

* * @param values the input array * @param begin index of the first array element to include * @param length the number of elements to include * @return the geometric mean of the values or Double.NaN if length = 0 * @throws MathIllegalArgumentException if the array is null or the array index * parameters are not valid */ public static double geometricMean(final double[] values, final int begin, final int length) throws MathIllegalArgumentException { return GEOMETRIC_MEAN.evaluate(values, begin, length); } /** * Returns the variance of the entries in the input array, or * Double.NaN if the array is empty. * *

This method returns the bias-corrected sample variance (using {@code n - 1} in * the denominator). Use {@link #populationVariance(double[])} for the non-bias-corrected * population variance.

*

* See {@link org.apache.commons.math3.stat.descriptive.moment.Variance} for * details on the computing algorithm.

*

* Returns 0 for a single-value (i.e. length = 1) sample.

*

* Throws MathIllegalArgumentException if the array is null.

* * @param values the input array * @return the variance of the values or Double.NaN if the array is empty * @throws MathIllegalArgumentException if the array is null */ public static double variance(final double[] values) throws MathIllegalArgumentException { return VARIANCE.evaluate(values); } /** * Returns the variance of the entries in the specified portion of * the input array, or Double.NaN if the designated subarray * is empty. * *

This method returns the bias-corrected sample variance (using {@code n - 1} in * the denominator). Use {@link #populationVariance(double[], int, int)} for the non-bias-corrected * population variance.

*

* See {@link org.apache.commons.math3.stat.descriptive.moment.Variance} for * details on the computing algorithm.

*

* Returns 0 for a single-value (i.e. length = 1) sample.

*

* Throws MathIllegalArgumentException if the array is null or the * array index parameters are not valid.

* * @param values the input array * @param begin index of the first array element to include * @param length the number of elements to include * @return the variance of the values or Double.NaN if length = 0 * @throws MathIllegalArgumentException if the array is null or the array index * parameters are not valid */ public static double variance(final double[] values, final int begin, final int length) throws MathIllegalArgumentException { return VARIANCE.evaluate(values, begin, length); } /** * Returns the variance of the entries in the specified portion of * the input array, using the precomputed mean value. Returns * Double.NaN if the designated subarray is empty. * *

This method returns the bias-corrected sample variance (using {@code n - 1} in * the denominator). Use {@link #populationVariance(double[], double, int, int)} for the non-bias-corrected * population variance.

*

* See {@link org.apache.commons.math3.stat.descriptive.moment.Variance} for * details on the computing algorithm.

*

* The formula used assumes that the supplied mean value is the arithmetic * mean of the sample data, not a known population parameter. This method * is supplied only to save computation when the mean has already been * computed.

*

* Returns 0 for a single-value (i.e. length = 1) sample.

*

* Throws MathIllegalArgumentException if the array is null or the * array index parameters are not valid.

* * @param values the input array * @param mean the precomputed mean value * @param begin index of the first array element to include * @param length the number of elements to include * @return the variance of the values or Double.NaN if length = 0 * @throws MathIllegalArgumentException if the array is null or the array index * parameters are not valid */ public static double variance(final double[] values, final double mean, final int begin, final int length) throws MathIllegalArgumentException { return VARIANCE.evaluate(values, mean, begin, length); } /** * Returns the variance of the entries in the input array, using the * precomputed mean value. Returns Double.NaN if the array * is empty. * *

This method returns the bias-corrected sample variance (using {@code n - 1} in * the denominator). Use {@link #populationVariance(double[], double)} for the non-bias-corrected * population variance.

*

* See {@link org.apache.commons.math3.stat.descriptive.moment.Variance} for * details on the computing algorithm.

*

* The formula used assumes that the supplied mean value is the arithmetic * mean of the sample data, not a known population parameter. This method * is supplied only to save computation when the mean has already been * computed.

*

* Returns 0 for a single-value (i.e. length = 1) sample.

*

* Throws MathIllegalArgumentException if the array is null.

* * @param values the input array * @param mean the precomputed mean value * @return the variance of the values or Double.NaN if the array is empty * @throws MathIllegalArgumentException if the array is null */ public static double variance(final double[] values, final double mean) throws MathIllegalArgumentException { return VARIANCE.evaluate(values, mean); } /** * Returns the * population variance of the entries in the input array, or * Double.NaN if the array is empty. *

* See {@link org.apache.commons.math3.stat.descriptive.moment.Variance} for * details on the formula and computing algorithm.

*

* Returns 0 for a single-value (i.e. length = 1) sample.

*

* Throws MathIllegalArgumentException if the array is null.

* * @param values the input array * @return the population variance of the values or Double.NaN if the array is empty * @throws MathIllegalArgumentException if the array is null */ public static double populationVariance(final double[] values) throws MathIllegalArgumentException { return new Variance(false).evaluate(values); } /** * Returns the * population variance of the entries in the specified portion of * the input array, or Double.NaN if the designated subarray * is empty. *

* See {@link org.apache.commons.math3.stat.descriptive.moment.Variance} for * details on the computing algorithm.

*

* Returns 0 for a single-value (i.e. length = 1) sample.

*

* Throws MathIllegalArgumentException if the array is null or the * array index parameters are not valid.

* * @param values the input array * @param begin index of the first array element to include * @param length the number of elements to include * @return the population variance of the values or Double.NaN if length = 0 * @throws MathIllegalArgumentException if the array is null or the array index * parameters are not valid */ public static double populationVariance(final double[] values, final int begin, final int length) throws MathIllegalArgumentException { return new Variance(false).evaluate(values, begin, length); } /** * Returns the * population variance of the entries in the specified portion of * the input array, using the precomputed mean value. Returns * Double.NaN if the designated subarray is empty. *

* See {@link org.apache.commons.math3.stat.descriptive.moment.Variance} for * details on the computing algorithm.

*

* The formula used assumes that the supplied mean value is the arithmetic * mean of the sample data, not a known population parameter. This method * is supplied only to save computation when the mean has already been * computed.

*

* Returns 0 for a single-value (i.e. length = 1) sample.

*

* Throws MathIllegalArgumentException if the array is null or the * array index parameters are not valid.

* * @param values the input array * @param mean the precomputed mean value * @param begin index of the first array element to include * @param length the number of elements to include * @return the population variance of the values or Double.NaN if length = 0 * @throws MathIllegalArgumentException if the array is null or the array index * parameters are not valid */ public static double populationVariance(final double[] values, final double mean, final int begin, final int length) throws MathIllegalArgumentException { return new Variance(false).evaluate(values, mean, begin, length); } /** * Returns the * population variance of the entries in the input array, using the * precomputed mean value. Returns Double.NaN if the array * is empty. *

* See {@link org.apache.commons.math3.stat.descriptive.moment.Variance} for * details on the computing algorithm.

*

* The formula used assumes that the supplied mean value is the arithmetic * mean of the sample data, not a known population parameter. This method * is supplied only to save computation when the mean has already been * computed.

*

* Returns 0 for a single-value (i.e. length = 1) sample.

*

* Throws MathIllegalArgumentException if the array is null.

* * @param values the input array * @param mean the precomputed mean value * @return the population variance of the values or Double.NaN if the array is empty * @throws MathIllegalArgumentException if the array is null */ public static double populationVariance(final double[] values, final double mean) throws MathIllegalArgumentException { return new Variance(false).evaluate(values, mean); } /** * Returns the maximum of the entries in the input array, or * Double.NaN if the array is empty. *

* Throws MathIllegalArgumentException if the array is null.

*

*

    *
  • The result is NaN iff all values are NaN * (i.e. NaN values have no impact on the value of the statistic).
  • *
  • If any of the values equals Double.POSITIVE_INFINITY, * the result is Double.POSITIVE_INFINITY.
  • *

* * @param values the input array * @return the maximum of the values or Double.NaN if the array is empty * @throws MathIllegalArgumentException if the array is null */ public static double max(final double[] values) throws MathIllegalArgumentException { return MAX.evaluate(values); } /** * Returns the maximum of the entries in the specified portion of * the input array, or Double.NaN if the designated subarray * is empty. *

* Throws MathIllegalArgumentException if the array is null or * the array index parameters are not valid.

*

*

    *
  • The result is NaN iff all values are NaN * (i.e. NaN values have no impact on the value of the statistic).
  • *
  • If any of the values equals Double.POSITIVE_INFINITY, * the result is Double.POSITIVE_INFINITY.
  • *

* * @param values the input array * @param begin index of the first array element to include * @param length the number of elements to include * @return the maximum of the values or Double.NaN if length = 0 * @throws MathIllegalArgumentException if the array is null or the array index * parameters are not valid */ public static double max(final double[] values, final int begin, final int length) throws MathIllegalArgumentException { return MAX.evaluate(values, begin, length); } /** * Returns the minimum of the entries in the input array, or * Double.NaN if the array is empty. *

* Throws MathIllegalArgumentException if the array is null.

*

*

    *
  • The result is NaN iff all values are NaN * (i.e. NaN values have no impact on the value of the statistic).
  • *
  • If any of the values equals Double.NEGATIVE_INFINITY, * the result is Double.NEGATIVE_INFINITY.
  • *

* * @param values the input array * @return the minimum of the values or Double.NaN if the array is empty * @throws MathIllegalArgumentException if the array is null */ public static double min(final double[] values) throws MathIllegalArgumentException { return MIN.evaluate(values); } /** * Returns the minimum of the entries in the specified portion of * the input array, or Double.NaN if the designated subarray * is empty. *

* Throws MathIllegalArgumentException if the array is null or * the array index parameters are not valid.

*

*

    *
  • The result is NaN iff all values are NaN * (i.e. NaN values have no impact on the value of the statistic).
  • *
  • If any of the values equals Double.NEGATIVE_INFINITY, * the result is Double.NEGATIVE_INFINITY.
  • *

* * @param values the input array * @param begin index of the first array element to include * @param length the number of elements to include * @return the minimum of the values or Double.NaN if length = 0 * @throws MathIllegalArgumentException if the array is null or the array index * parameters are not valid */ public static double min(final double[] values, final int begin, final int length) throws MathIllegalArgumentException { return MIN.evaluate(values, begin, length); } /** * Returns an estimate of the pth percentile of the values * in the values array. *

*

    *
  • Returns Double.NaN if values has length * 0
  • *
  • Returns (for any value of p) values[0] * if values has length 1
  • *
  • Throws IllegalArgumentException if values * is null or p is not a valid quantile value (p must be greater than 0 * and less than or equal to 100)
  • *

*

* See {@link org.apache.commons.math3.stat.descriptive.rank.Percentile} for * a description of the percentile estimation algorithm used.

* * @param values input array of values * @param p the percentile value to compute * @return the percentile value or Double.NaN if the array is empty * @throws MathIllegalArgumentException if values is null * or p is invalid */ public static double percentile(final double[] values, final double p) throws MathIllegalArgumentException { return PERCENTILE.evaluate(values,p); } /** * Returns an estimate of the pth percentile of the values * in the values array, starting with the element in (0-based) * position begin in the array and including length * values. *

*

    *
  • Returns Double.NaN if length = 0
  • *
  • Returns (for any value of p) values[begin] * if length = 1
  • *
  • Throws MathIllegalArgumentException if values * is null , begin or length is invalid, or * p is not a valid quantile value (p must be greater than 0 * and less than or equal to 100)
  • *

*

* See {@link org.apache.commons.math3.stat.descriptive.rank.Percentile} for * a description of the percentile estimation algorithm used.

* * @param values array of input values * @param p the percentile to compute * @param begin the first (0-based) element to include in the computation * @param length the number of array elements to include * @return the percentile value * @throws MathIllegalArgumentException if the parameters are not valid or the * input array is null */ public static double percentile(final double[] values, final int begin, final int length, final double p) throws MathIllegalArgumentException { return PERCENTILE.evaluate(values, begin, length, p); } /** * Returns the sum of the (signed) differences between corresponding elements of the * input arrays -- i.e., sum(sample1[i] - sample2[i]). * * @param sample1 the first array * @param sample2 the second array * @return sum of paired differences * @throws DimensionMismatchException if the arrays do not have the same * (positive) length. * @throws NoDataException if the sample arrays are empty. */ public static double sumDifference(final double[] sample1, final double[] sample2) throws DimensionMismatchException, NoDataException { int n = sample1.length; if (n != sample2.length) { throw new DimensionMismatchException(n, sample2.length); } if (n <= 0) { throw new NoDataException(LocalizedFormats.INSUFFICIENT_DIMENSION); } double result = 0; for (int i = 0; i < n; i++) { result += sample1[i] - sample2[i]; } return result; } /** * Returns the mean of the (signed) differences between corresponding elements of the * input arrays -- i.e., sum(sample1[i] - sample2[i]) / sample1.length. * * @param sample1 the first array * @param sample2 the second array * @return mean of paired differences * @throws DimensionMismatchException if the arrays do not have the same * (positive) length. * @throws NoDataException if the sample arrays are empty. */ public static double meanDifference(final double[] sample1, final double[] sample2) throws DimensionMismatchException, NoDataException{ return sumDifference(sample1, sample2) / sample1.length; } /** * Returns the variance of the (signed) differences between corresponding elements of the * input arrays -- i.e., var(sample1[i] - sample2[i]). * * @param sample1 the first array * @param sample2 the second array * @param meanDifference the mean difference between corresponding entries * @see #meanDifference(double[],double[]) * @return variance of paired differences * @throws DimensionMismatchException if the arrays do not have the same * length. * @throws NumberIsTooSmallException if the arrays length is less than 2. */ public static double varianceDifference(final double[] sample1, final double[] sample2, double meanDifference) throws DimensionMismatchException, NumberIsTooSmallException { double sum1 = 0d; double sum2 = 0d; double diff = 0d; int n = sample1.length; if (n != sample2.length) { throw new DimensionMismatchException(n, sample2.length); } if (n < 2) { throw new NumberIsTooSmallException(n, 2, true); } for (int i = 0; i < n; i++) { diff = sample1[i] - sample2[i]; sum1 += (diff - meanDifference) *(diff - meanDifference); sum2 += diff - meanDifference; } return (sum1 - (sum2 * sum2 / n)) / (n - 1); } /** * Normalize (standardize) the sample, so it is has a mean of 0 and a standard deviation of 1. * * @param sample Sample to normalize. * @return normalized (standardized) sample. * @since 2.2 */ public static double[] normalize(final double[] sample) { DescriptiveStatistics stats = new DescriptiveStatistics(); // Add the data from the series to stats for (int i = 0; i < sample.length; i++) { stats.addValue(sample[i]); } // Compute mean and standard deviation double mean = stats.getMean(); double standardDeviation = stats.getStandardDeviation(); // initialize the standardizedSample, which has the same length as the sample double[] standardizedSample = new double[sample.length]; for (int i = 0; i < sample.length; i++) { // z = (x- mean)/standardDeviation standardizedSample[i] = (sample[i] - mean) / standardDeviation; } return standardizedSample; } /** * Returns the sample mode(s). The mode is the most frequently occurring * value in the sample. If there is a unique value with maximum frequency, * this value is returned as the only element of the output array. Otherwise, * the returned array contains the maximum frequency elements in increasing * order. For example, if {@code sample} is {0, 12, 5, 6, 0, 13, 5, 17}, * the returned array will have length two, with 0 in the first element and * 5 in the second. * *

NaN values are ignored when computing the mode - i.e., NaNs will never * appear in the output array. If the sample includes only NaNs or has * length 0, an empty array is returned.

* * @param sample input data * @return array of array of the most frequently occurring element(s) sorted in ascending order. * @throws MathIllegalArgumentException if the indices are invalid or the array is null * @since 3.3 */ public static double[] mode(double[] sample) throws MathIllegalArgumentException { if (sample == null) { throw new NullArgumentException(LocalizedFormats.INPUT_ARRAY); } return getMode(sample, 0, sample.length); } /** * Returns the sample mode(s). The mode is the most frequently occurring * value in the sample. If there is a unique value with maximum frequency, * this value is returned as the only element of the output array. Otherwise, * the returned array contains the maximum frequency elements in increasing * order. For example, if {@code sample} is {0, 12, 5, 6, 0, 13, 5, 17}, * the returned array will have length two, with 0 in the first element and * 5 in the second. * *

NaN values are ignored when computing the mode - i.e., NaNs will never * appear in the output array. If the sample includes only NaNs or has * length 0, an empty array is returned.

* * @param sample input data * @param begin index (0-based) of the first array element to include * @param length the number of elements to include * * @return array of array of the most frequently occurring element(s) sorted in ascending order. * @throws MathIllegalArgumentException if the indices are invalid or the array is null * @since 3.3 */ public static double[] mode(double[] sample, final int begin, final int length) { if (sample == null) { throw new NullArgumentException(LocalizedFormats.INPUT_ARRAY); } if (begin < 0) { throw new NotPositiveException(LocalizedFormats.START_POSITION, Integer.valueOf(begin)); } if (length < 0) { throw new NotPositiveException(LocalizedFormats.LENGTH, Integer.valueOf(length)); } return getMode(sample, begin, length); } /** * Private helper method. * Assumes parameters have been validated. * @param values input data * @param begin index (0-based) of the first array element to include * @param length the number of elements to include * @return array of array of the most frequently occurring element(s) sorted in ascending order. */ private static double[] getMode(double[] values, final int begin, final int length) { // Add the values to the frequency table Frequency freq = new Frequency(); for (int i = begin; i < begin + length; i++) { final double value = values[i]; if (!Double.isNaN(value)) { freq.addValue(Double.valueOf(value)); } } List> list = freq.getMode(); // Convert the list to an array of primitive double double[] modes = new double[list.size()]; int i = 0; for(Comparable c : list) { modes[i++] = ((Double) c).doubleValue(); } return modes; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy