All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.stat.interval.IntervalUtils Maven / Gradle / Ivy

Go to download

A Java's Collaborative Filtering library to carry out experiments in research of Collaborative Filtering based Recommender Systems. The library has been designed from researchers to researchers.

The newest version!
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.stat.interval;

import org.apache.commons.math3.exception.NotPositiveException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;

/**
 * Factory methods to generate confidence intervals for a binomial proportion.
 * The supported methods are:
 * 
    *
  • Agresti-Coull interval
  • *
  • Clopper-Pearson method (exact method)
  • *
  • Normal approximation (based on central limit theorem)
  • *
  • Wilson score interval
  • *
* * @since 3.3 */ public final class IntervalUtils { /** Singleton Agresti-Coull instance. */ private static final BinomialConfidenceInterval AGRESTI_COULL = new AgrestiCoullInterval(); /** Singleton Clopper-Pearson instance. */ private static final BinomialConfidenceInterval CLOPPER_PEARSON = new ClopperPearsonInterval(); /** Singleton NormalApproximation instance. */ private static final BinomialConfidenceInterval NORMAL_APPROXIMATION = new NormalApproximationInterval(); /** Singleton Wilson score instance. */ private static final BinomialConfidenceInterval WILSON_SCORE = new WilsonScoreInterval(); /** * Prevent instantiation. */ private IntervalUtils() { } /** * Create an Agresti-Coull binomial confidence interval for the true * probability of success of an unknown binomial distribution with the given * observed number of trials, successes and confidence level. * * @param numberOfTrials number of trials * @param numberOfSuccesses number of successes * @param confidenceLevel desired probability that the true probability of * success falls within the returned interval * @return Confidence interval containing the probability of success with * probability {@code confidenceLevel} * @throws NotStrictlyPositiveException if {@code numberOfTrials <= 0}. * @throws NotPositiveException if {@code numberOfSuccesses < 0}. * @throws NumberIsTooLargeException if {@code numberOfSuccesses > numberOfTrials}. * @throws OutOfRangeException if {@code confidenceLevel} is not in the interval {@code (0, 1)}. */ public static ConfidenceInterval getAgrestiCoullInterval(int numberOfTrials, int numberOfSuccesses, double confidenceLevel) { return AGRESTI_COULL.createInterval(numberOfTrials, numberOfSuccesses, confidenceLevel); } /** * Create a Clopper-Pearson binomial confidence interval for the true * probability of success of an unknown binomial distribution with the given * observed number of trials, successes and confidence level. *

* Preconditions: *

    *
  • {@code numberOfTrials} must be positive
  • *
  • {@code numberOfSuccesses} may not exceed {@code numberOfTrials}
  • *
  • {@code confidenceLevel} must be strictly between 0 and 1 (exclusive)
  • *
*

* * @param numberOfTrials number of trials * @param numberOfSuccesses number of successes * @param confidenceLevel desired probability that the true probability of * success falls within the returned interval * @return Confidence interval containing the probability of success with * probability {@code confidenceLevel} * @throws NotStrictlyPositiveException if {@code numberOfTrials <= 0}. * @throws NotPositiveException if {@code numberOfSuccesses < 0}. * @throws NumberIsTooLargeException if {@code numberOfSuccesses > numberOfTrials}. * @throws OutOfRangeException if {@code confidenceLevel} is not in the interval {@code (0, 1)}. */ public static ConfidenceInterval getClopperPearsonInterval(int numberOfTrials, int numberOfSuccesses, double confidenceLevel) { return CLOPPER_PEARSON.createInterval(numberOfTrials, numberOfSuccesses, confidenceLevel); } /** * Create a binomial confidence interval for the true probability of success * of an unknown binomial distribution with the given observed number of * trials, successes and confidence level using the Normal approximation to * the binomial distribution. * * @param numberOfTrials number of trials * @param numberOfSuccesses number of successes * @param confidenceLevel desired probability that the true probability of * success falls within the interval * @return Confidence interval containing the probability of success with * probability {@code confidenceLevel} */ public static ConfidenceInterval getNormalApproximationInterval(int numberOfTrials, int numberOfSuccesses, double confidenceLevel) { return NORMAL_APPROXIMATION.createInterval(numberOfTrials, numberOfSuccesses, confidenceLevel); } /** * Create a Wilson score binomial confidence interval for the true * probability of success of an unknown binomial distribution with the given * observed number of trials, successes and confidence level. * * @param numberOfTrials number of trials * @param numberOfSuccesses number of successes * @param confidenceLevel desired probability that the true probability of * success falls within the returned interval * @return Confidence interval containing the probability of success with * probability {@code confidenceLevel} * @throws NotStrictlyPositiveException if {@code numberOfTrials <= 0}. * @throws NotPositiveException if {@code numberOfSuccesses < 0}. * @throws NumberIsTooLargeException if {@code numberOfSuccesses > numberOfTrials}. * @throws OutOfRangeException if {@code confidenceLevel} is not in the interval {@code (0, 1)}. */ public static ConfidenceInterval getWilsonScoreInterval(int numberOfTrials, int numberOfSuccesses, double confidenceLevel) { return WILSON_SCORE.createInterval(numberOfTrials, numberOfSuccesses, confidenceLevel); } /** * Verifies that parameters satisfy preconditions. * * @param numberOfTrials number of trials (must be positive) * @param numberOfSuccesses number of successes (must not exceed numberOfTrials) * @param confidenceLevel confidence level (must be strictly between 0 and 1) * @throws NotStrictlyPositiveException if {@code numberOfTrials <= 0}. * @throws NotPositiveException if {@code numberOfSuccesses < 0}. * @throws NumberIsTooLargeException if {@code numberOfSuccesses > numberOfTrials}. * @throws OutOfRangeException if {@code confidenceLevel} is not in the interval {@code (0, 1)}. */ static void checkParameters(int numberOfTrials, int numberOfSuccesses, double confidenceLevel) { if (numberOfTrials <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.NUMBER_OF_TRIALS, numberOfTrials); } if (numberOfSuccesses < 0) { throw new NotPositiveException(LocalizedFormats.NEGATIVE_NUMBER_OF_SUCCESSES, numberOfSuccesses); } if (numberOfSuccesses > numberOfTrials) { throw new NumberIsTooLargeException(LocalizedFormats.NUMBER_OF_SUCCESS_LARGER_THAN_POPULATION_SIZE, numberOfSuccesses, numberOfTrials, true); } if (confidenceLevel <= 0 || confidenceLevel >= 1) { throw new OutOfRangeException(LocalizedFormats.OUT_OF_BOUNDS_CONFIDENCE_LEVEL, confidenceLevel, 0, 1); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy