com.bouncycastle.crypto.engines.RC6Engine Maven / Gradle / Ivy
package com.bouncycastle.crypto.engines;
import com.bouncycastle.crypto.BlockCipher;
import com.bouncycastle.crypto.CipherParameters;
import com.bouncycastle.crypto.DataLengthException;
import com.bouncycastle.crypto.params.KeyParameter;
/**
* An RC6 engine.
*/
public class RC6Engine
implements BlockCipher
{
private static final int wordSize = 32;
private static final int bytesPerWord = wordSize / 8;
/*
* the number of rounds to perform
*/
private static final int _noRounds = 20;
/*
* the expanded key array of size 2*(rounds + 1)
*/
private int _S[];
/*
* our "magic constants" for wordSize 32
*
* Pw = Odd((e-2) * 2^wordsize)
* Qw = Odd((o-2) * 2^wordsize)
*
* where e is the base of natural logarithms (2.718281828...)
* and o is the golden ratio (1.61803398...)
*/
private static final int P32 = 0xb7e15163;
private static final int Q32 = 0x9e3779b9;
private static final int LGW = 5; // log2(32)
private boolean forEncryption;
/**
* Create an instance of the RC6 encryption algorithm
* and set some defaults
*/
public RC6Engine()
{
_S = null;
}
public String getAlgorithmName()
{
return "RC6";
}
public int getBlockSize()
{
return 4 * bytesPerWord;
}
/**
* initialise a RC5-32 cipher.
*
* @param forEncryption whether or not we are for encryption.
* @param params the parameters required to set up the cipher.
* @exception IllegalArgumentException if the params argument is
* inappropriate.
*/
public void init(
boolean forEncryption,
CipherParameters params)
{
if (!(params instanceof KeyParameter))
{
throw new IllegalArgumentException("invalid parameter passed to RC6 init - " + params.getClass().getName());
}
KeyParameter p = (KeyParameter)params;
this.forEncryption = forEncryption;
setKey(p.getKey());
}
public int processBlock(
byte[] in,
int inOff,
byte[] out,
int outOff)
{
int blockSize = getBlockSize();
if (_S == null)
{
throw new IllegalStateException("RC6 engine not initialised");
}
if ((inOff + blockSize) > in.length)
{
throw new DataLengthException("input buffer too short");
}
if ((outOff + blockSize) > out.length)
{
throw new DataLengthException("output buffer too short");
}
return (forEncryption)
? encryptBlock(in, inOff, out, outOff)
: decryptBlock(in, inOff, out, outOff);
}
public void reset()
{
}
/**
* Re-key the cipher.
*
* @param inKey the key to be used
*/
private void setKey(
byte[] key)
{
//
// KEY EXPANSION:
//
// There are 3 phases to the key expansion.
//
// Phase 1:
// Copy the secret key K[0...b-1] into an array L[0..c-1] of
// c = ceil(b/u), where u = wordSize/8 in little-endian order.
// In other words, we fill up L using u consecutive key bytes
// of K. Any unfilled byte positions in L are zeroed. In the
// case that b = c = 0, set c = 1 and L[0] = 0.
//
// compute number of dwords
int c = (key.length + (bytesPerWord - 1)) / bytesPerWord;
if (c == 0)
{
c = 1;
}
int[] L = new int[(key.length + bytesPerWord - 1) / bytesPerWord];
// load all key bytes into array of key dwords
for (int i = key.length - 1; i >= 0; i--)
{
L[i / bytesPerWord] = (L[i / bytesPerWord] << 8) + (key[i] & 0xff);
}
//
// Phase 2:
// Key schedule is placed in a array of 2+2*ROUNDS+2 = 44 dwords.
// Initialize S to a particular fixed pseudo-random bit pattern
// using an arithmetic progression modulo 2^wordsize determined
// by the magic numbers, Pw & Qw.
//
_S = new int[2+2*_noRounds+2];
_S[0] = P32;
for (int i=1; i < _S.length; i++)
{
_S[i] = (_S[i-1] + Q32);
}
//
// Phase 3:
// Mix in the user's secret key in 3 passes over the arrays S & L.
// The max of the arrays sizes is used as the loop control
//
int iter;
if (L.length > _S.length)
{
iter = 3 * L.length;
}
else
{
iter = 3 * _S.length;
}
int A = 0;
int B = 0;
int i = 0, j = 0;
for (int k = 0; k < iter; k++)
{
A = _S[i] = rotateLeft(_S[i] + A + B, 3);
B = L[j] = rotateLeft(L[j] + A + B, A+B);
i = (i+1) % _S.length;
j = (j+1) % L.length;
}
}
private int encryptBlock(
byte[] in,
int inOff,
byte[] out,
int outOff)
{
// load A,B,C and D registers from in.
int A = bytesToWord(in, inOff);
int B = bytesToWord(in, inOff + bytesPerWord);
int C = bytesToWord(in, inOff + bytesPerWord*2);
int D = bytesToWord(in, inOff + bytesPerWord*3);
// Do pseudo-round #0: pre-whitening of B and D
B += _S[0];
D += _S[1];
// perform round #1,#2 ... #ROUNDS of encryption
for (int i = 1; i <= _noRounds; i++)
{
int t = 0,u = 0;
t = B*(2*B+1);
t = rotateLeft(t,5);
u = D*(2*D+1);
u = rotateLeft(u,5);
A ^= t;
A = rotateLeft(A,u);
A += _S[2*i];
C ^= u;
C = rotateLeft(C,t);
C += _S[2*i+1];
int temp = A;
A = B;
B = C;
C = D;
D = temp;
}
// do pseudo-round #(ROUNDS+1) : post-whitening of A and C
A += _S[2*_noRounds+2];
C += _S[2*_noRounds+3];
// store A, B, C and D registers to out
wordToBytes(A, out, outOff);
wordToBytes(B, out, outOff + bytesPerWord);
wordToBytes(C, out, outOff + bytesPerWord*2);
wordToBytes(D, out, outOff + bytesPerWord*3);
return 4 * bytesPerWord;
}
private int decryptBlock(
byte[] in,
int inOff,
byte[] out,
int outOff)
{
// load A,B,C and D registers from out.
int A = bytesToWord(in, inOff);
int B = bytesToWord(in, inOff + bytesPerWord);
int C = bytesToWord(in, inOff + bytesPerWord*2);
int D = bytesToWord(in, inOff + bytesPerWord*3);
// Undo pseudo-round #(ROUNDS+1) : post whitening of A and C
C -= _S[2*_noRounds+3];
A -= _S[2*_noRounds+2];
// Undo round #ROUNDS, .., #2,#1 of encryption
for (int i = _noRounds; i >= 1; i--)
{
int t=0,u = 0;
int temp = D;
D = C;
C = B;
B = A;
A = temp;
t = B*(2*B+1);
t = rotateLeft(t, LGW);
u = D*(2*D+1);
u = rotateLeft(u, LGW);
C -= _S[2*i+1];
C = rotateRight(C,t);
C ^= u;
A -= _S[2*i];
A = rotateRight(A,u);
A ^= t;
}
// Undo pseudo-round #0: pre-whitening of B and D
D -= _S[1];
B -= _S[0];
wordToBytes(A, out, outOff);
wordToBytes(B, out, outOff + bytesPerWord);
wordToBytes(C, out, outOff + bytesPerWord*2);
wordToBytes(D, out, outOff + bytesPerWord*3);
return 4 * bytesPerWord;
}
//////////////////////////////////////////////////////////////
//
// PRIVATE Helper Methods
//
//////////////////////////////////////////////////////////////
/**
* Perform a left "spin" of the word. The rotation of the given
* word x is rotated left by y bits.
* Only the lg(wordSize) low-order bits of y
* are used to determine the rotation amount. Here it is
* assumed that the wordsize used is 32.
*
* @param x word to rotate
* @param y number of bits to rotate % wordSize
*/
private int rotateLeft(int x, int y)
{
return (x << y) | (x >>> -y);
}
/**
* Perform a right "spin" of the word. The rotation of the given
* word x is rotated left by y bits.
* Only the lg(wordSize) low-order bits of y
* are used to determine the rotation amount. Here it is
* assumed that the wordsize used is a power of 2.
*
* @param x word to rotate
* @param y number of bits to rotate % wordSize
*/
private int rotateRight(int x, int y)
{
return (x >>> y) | (x << -y);
}
private int bytesToWord(
byte[] src,
int srcOff)
{
int word = 0;
for (int i = bytesPerWord - 1; i >= 0; i--)
{
word = (word << 8) + (src[i + srcOff] & 0xff);
}
return word;
}
private void wordToBytes(
int word,
byte[] dst,
int dstOff)
{
for (int i = 0; i < bytesPerWord; i++)
{
dst[i + dstOff] = (byte)word;
word >>>= 8;
}
}
}