All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.immune.airs.AIRS2 Maven / Gradle / Ivy

Go to download

Fork of the following defunct sourceforge.net project: https://sourceforge.net/projects/wekaclassalgos/

There is a newer version: 2023.2.8
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 * Created on 30/12/2004
 *
 */
package weka.classifiers.immune.airs;

import weka.classifiers.AbstractClassifier;
import weka.classifiers.immune.airs.algorithm.AIRS2Trainer;
import weka.classifiers.immune.airs.algorithm.AISModelClassifier;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.Utils;

import java.util.Enumeration;
import java.util.LinkedList;
import java.util.Random;
import java.util.Vector;

/**
 * Type: AIRS1
 * File: AIRS1.java
 * Date: 07/01/2005
 * 

* Description: * * @author Jason Brownlee */ public class AIRS2 extends AbstractClassifier implements AIRSParameterDocumentation { // paramters protected long seed; protected double affinityThresholdScalar; protected double clonalRate; protected double hypermutationRate; protected double totalResources; protected double stimulationValue; protected int numInstancesAffinityThreshold; protected int memInitialPoolSize; protected int knn; protected String trainingSummary; protected String classifierSummary; private final static String[] PARAMETERS = { "S", // seed "F", // affinity threshold "C", // clonal rate "H", // hypermutation "R", // total resources "V", // stimulation value "A", // num affinity threshold instances "E", // mem pool size "K" // kNN }; private final static String[] DESCRIPTIONS = { PARAM_SEED, PARAM_ATS, PARAM_CLONAL_RATE, PARAM_HMR, PARAM_RESOURCES, PARAM_STIMULATION, PARAM_AT_INSTANCES, PARAM_MEM_INSTANCES, PARAM_KNN }; /** * The model */ protected AISModelClassifier classifier; public AIRS2() { // set default values seed = 1; affinityThresholdScalar = 0.2; totalResources = 150; stimulationValue = 0.9; clonalRate = 10; hypermutationRate = 2.0; numInstancesAffinityThreshold = -1; memInitialPoolSize = 1; knn = 3; } /** * Returns the Capabilities of this classifier. * * @return the capabilities of this object * @see Capabilities */ @Override public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.NOMINAL_ATTRIBUTES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); result.setMinimumNumberInstances(1); return result; } /** * @param data * @throws java.lang.Exception */ public void buildClassifier(Instances data) throws Exception { Instances trainingInstances = new Instances(data); trainingInstances.deleteWithMissingClass(); getCapabilities().testWithFail(trainingInstances); // validate paramters validateParameters(trainingInstances); // construct trainer Random rand = new Random(seed); AIRS2Trainer trainer = new AIRS2Trainer( affinityThresholdScalar, clonalRate, hypermutationRate, totalResources, stimulationValue, numInstancesAffinityThreshold, rand, memInitialPoolSize, knn); // prepare classifier classifier = trainer.train(trainingInstances); // get summaries trainingSummary = trainer.getTrainingSummary(); classifierSummary = classifier.getModelSummary(trainingInstances); } protected void validateParameters(Instances trainingInstances) throws Exception { int numInstances = trainingInstances.numInstances(); if (memInitialPoolSize > numInstances) { memInitialPoolSize = numInstances; } } public double classifyInstance(Instance instance) throws Exception { if (classifier == null) { throw new Exception("Algorithm has not been prepared."); } // TODO: validate of data provided matches training data specs return classifier.classifyInstance(instance); } public String toString() { StringBuffer buffer = new StringBuffer(1000); buffer.append("AIRS2 - Artificial Immune Recognition System v2.0\n"); buffer.append("\n"); if (trainingSummary != null) { buffer.append(trainingSummary); buffer.append("\n"); } if (classifierSummary != null) { buffer.append(classifierSummary); } return buffer.toString(); } public String globalInfo() { StringBuffer buffer = new StringBuffer(1000); buffer.append(toString()); buffer.append("A resource limited artifical immune system (AIS) "); buffer.append("for supervised classification, using clonal selection, "); buffer.append("affinity maturation and affinity recognition balls (ARBs)."); buffer.append("\n\n"); buffer.append("Andrew Watkins, Jon Timmis, and Lois Boggess, "); buffer.append("Artificial Immune Recognition System (AIRS): An Immune-Inspired Supervised Learning Algorithm, "); buffer.append("Genetic Programming and Evolvable Machines, "); buffer.append("vol. 5, pp. 291-317, Sep, 2004."); return buffer.toString(); } public Enumeration listOptions() { Vector





© 2015 - 2024 Weber Informatics LLC | Privacy Policy