All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.immune.airs.algorithm.Utils Maven / Gradle / Ivy

Go to download

Fork of the following defunct sourceforge.net project: https://sourceforge.net/projects/wekaclassalgos/

There is a newer version: 2023.2.8
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

/*
 * Created on 30/12/2004
 *
 */
package weka.classifiers.immune.airs.algorithm;

import weka.core.Instance;
import weka.core.Instances;

import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.Random;

/**
 * Type: Utils
 * File: Utils.java
 * Date: 30/12/2004
 * 

* Description: * * @author Jason Brownlee */ public final class Utils { public final static NumberFormat format = new DecimalFormat(); public final static boolean isSameClass(Instance aInstance, Cell aCell) { return aInstance.classValue() == aCell.getClassification(); } public final static double calculateAffinityThreshold( Instances aInstances, int affinityThresholdNumInstances, Random rand, AffinityFunction affinityFunction) { Instances newset = new Instances(aInstances); // check if all should be used if (affinityThresholdNumInstances < 1 || affinityThresholdNumInstances > newset.numInstances()) { affinityThresholdNumInstances = newset.numInstances(); } // prune some else if (newset.numInstances() > affinityThresholdNumInstances) { // randomise the dataset newset.randomize(rand); while (newset.numInstances() > affinityThresholdNumInstances) { newset.delete(0); } } int totalInstances = newset.numInstances(); double sumAffinity = 0.0; int count = 0; // sum affinity values for (int i = 0; i < totalInstances; i++) { Instance first = newset.instance(i); for (int j = i + 1; j < totalInstances; j++) { sumAffinity += affinityFunction.affinityNormalised(first, newset.instance(j)); count++; } } // take the mean return sumAffinity / count; } public final static int performPrunning( CellPool aMemoryPool, Instances instances, AffinityFunction affinityFunction) { LinkedList cells = aMemoryPool.getCells(); int totalPruned = 0; // clear usage for (Cell c : cells) { c.clearUsage(); } // calculate usage for (int i = 0; i < instances.numInstances(); i++) { Cell best = aMemoryPool.affinityResponseNormalised(instances.instance(i), affinityFunction).getFirst(); best.incrementUsage(); } // remove all without usage for (Iterator iter = cells.iterator(); iter.hasNext(); ) { Cell element = iter.next(); if (element.getUsage() == 0) { iter.remove(); totalPruned++; } } return totalPruned; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy