All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.immune.immunos.Immunos2Algorithm Maven / Gradle / Ivy

Go to download

Fork of the following defunct sourceforge.net project: https://sourceforge.net/projects/wekaclassalgos/

There is a newer version: 2023.2.8
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

package weka.classifiers.immune.immunos;

import weka.core.Instance;
import weka.core.Instances;

/**
 * Type: ImmunosClonalMean
* Date: 28/01/2005
*
*

* Description: * * @author Jason Brownlee */ public class Immunos2Algorithm extends Immunos1Algorithm { protected double[][] exemplars; protected void prepareClassifier(Instances aInstances) { super.prepareClassifier(aInstances); exemplars = new double[groups.length][]; int numAttributes = aInstances.numAttributes(); // prepare exemplars for (int i = 0; i < groups.length; i++) { exemplars[i] = new double[numAttributes]; int[] counts = new int[numAttributes]; // sum values for each attribute over all instances for (int j = 0; j < groups[i].numInstances(); j++) { Instance current = groups[i].instance(j); for (int k = 0; k < exemplars[i].length; k++) { // check for missing if (weka.core.Utils.isMissingValue(current.value(k))) { continue; } exemplars[i][k] += current.value(k); counts[k]++; } } // calculate means for (int j = 0; j < exemplars[i].length; j++) { exemplars[i][j] /= counts[j]; if (aInstances.attribute(j).isNominal()) { exemplars[i][j] = Math.round(exemplars[i][j]); } } } } protected double[] calculateGroupAvidity(Instance aInstance) { double[] dataInstance = aInstance.toDoubleArray(); double[] avidity = new double[groups.length]; for (int i = 0; i < groups.length; i++) { // check for empty group if (groups[i].numInstances() == 0) { avidity[i] = Double.NaN; } else { double affinity = affinityFunction.distanceEuclideanUnnormalised(exemplars[i], dataInstance); // store summed affinity as avidity affinity = (groups[i].numInstances() / affinity); avidity[i] = affinity; } } return avidity; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy