weka.classifiers.neural.common.training.TrainerFactory Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of wekaclassalgos Show documentation
Show all versions of wekaclassalgos Show documentation
Fork of the following defunct sourceforge.net project: https://sourceforge.net/projects/wekaclassalgos/
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package weka.classifiers.neural.common.training;
import weka.classifiers.neural.common.RandomWrapper;
import weka.core.Tag;
/**
* Title: Weka Neural Implementation
* Description: ...
* Copyright: Copyright (c) 2003
* Company: N/A
*
* @author Jason Brownlee
* @version 1.0
*/
public class TrainerFactory {
public final static int TRAINER_BATCH = +1;
public final static int TRAINER_ONLINE = +2;
public final static String[] TRAINING_MODE_FULL_DESC =
{
"Batch Training - weight changes are applied at the end of each epoch",
"Online Training - weight changes are applied after each pattern"
};
public static String getDescriptionForMode(int mode) {
return TRAINING_MODE_FULL_DESC[mode - 1];
}
// tags for training mode
public final static Tag[] TAGS_TRAINING_MODE =
{
new Tag(TRAINER_BATCH, "Batch Training"),
new Tag(TRAINER_ONLINE, "Online Training")
};
public final static String DESCRIPTION;
static {
StringBuffer buffer = new StringBuffer();
buffer.append("(");
for (int i = 0; i < TAGS_TRAINING_MODE.length; i++) {
buffer.append(TAGS_TRAINING_MODE[i].getID());
buffer.append("==");
buffer.append(TAGS_TRAINING_MODE[i].getReadable());
if (i != TAGS_TRAINING_MODE.length - 1) {
buffer.append(", ");
}
}
buffer.append(")");
DESCRIPTION = buffer.toString();
}
public static NeuralTrainer factory(int selection, RandomWrapper aRand) {
NeuralTrainer trainer = null;
switch (selection) {
case TRAINER_BATCH: {
trainer = new BatchTrainer(aRand);
break;
}
case TRAINER_ONLINE: {
trainer = new OnlineTrainer(aRand);
break;
}
default: {
throw new RuntimeException("Unknown trainer: " + selection);
}
}
return trainer;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy