weka.classifiers.neural.lvq.Lvq1 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of wekaclassalgos Show documentation
Show all versions of wekaclassalgos Show documentation
Fork of the following defunct sourceforge.net project: https://sourceforge.net/projects/wekaclassalgos/
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package weka.classifiers.neural.lvq;
import weka.classifiers.neural.common.learning.LearningKernelFactory;
import weka.classifiers.neural.common.learning.LearningRateKernel;
import weka.classifiers.neural.lvq.algorithm.Lvq1Algorithm;
import weka.core.Instances;
import java.util.Collection;
/**
* Description: Implementation of the LVQ1 algorithm for use in WEKA
* Implements elements required for the common LVQ algorithm framework
* specific to the LVQ1 algorithm.
*
*
* Copyright (c) Jason Brownlee 2004
*
*
* @author Jason Brownlee
*/
public class Lvq1 extends LvqAlgorithmAncestor {
protected void trainModel(Instances instances) {
// construct the algorithm
LearningRateKernel learningKernel = LearningKernelFactory.factory(learningFunction, learningRate, trainingIterations);
Lvq1Algorithm algorithm = new Lvq1Algorithm(learningKernel, model, random);
// add event listeners
addEventListenersToAlgorithm(algorithm);
// train the algorithm
algorithm.trainModel(instances, trainingIterations);
}
/**
* Validate LVQ1 specific arguments
*
* @throws Exception
*/
protected void validateArguments()
throws Exception {
// do nothing
}
/**
* Provide list of LVQ1 specific options
*
* @return Collection
*/
protected Collection getListOptions() {
// do nothing
return null;
}
protected void setArguments(String[] options)
throws Exception {
}
/**
* Provide collection of LVQ1 specific options
*
* @return Collection
*/
protected Collection getAlgorithmOptions() {
// do nothing
return null;
}
/**
* Return LVQ1 specific information
*
* @return String
*/
public String globalInfo() {
StringBuffer buffer = new StringBuffer(100);
buffer.append("Learning Vector Quantisation (LVQ) - LVQ1.");
buffer.append("A single BMU (best matching unit) is selected and moved closer or ");
buffer.append("further away from each data vector, per iteration.");
return buffer.toString();
}
/**
* Entry point into the algorithm for direct usage
*
* @param args
*/
public static void main(String[] args) {
runClassifier(new Lvq1(), args);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy