weka.classifiers.neural.lvq.Lvq3 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of wekaclassalgos Show documentation
Show all versions of wekaclassalgos Show documentation
Fork of the following defunct sourceforge.net project: https://sourceforge.net/projects/wekaclassalgos/
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package weka.classifiers.neural.lvq;
import weka.classifiers.neural.common.Constants;
import weka.classifiers.neural.common.learning.LearningKernelFactory;
import weka.classifiers.neural.common.learning.LearningRateKernel;
import weka.classifiers.neural.lvq.algorithm.Lvq3Algorithm;
import weka.core.Instances;
import weka.core.Option;
import weka.core.Utils;
import java.util.ArrayList;
import java.util.Collection;
/**
* Description: Implementation of the LVQ3 algorithm for use in WEKA
*
*
* Copyright (c) Jason Brownlee 2004
*
*
* @author Jason Brownlee
*/
public class Lvq3 extends LvqAlgorithmAncestor {
/**
* Window size parameter
*/
private final static String PARAM_WINDOW_SIZE = "W";
/**
* Epsilon parameter
*/
private final static String PARAM_EPSILON = "E";
/**
* Window size parameter description
*/
private final static String PARAM_WINDOW_SIZE_DESC = Constants.DESCRIPTION_WINDOW_SIZE;
/**
* Epsilon parameter description
*/
private final static String PARAM_EPSILON_DESC = Constants.DESCRIPTION_EPSILON;
/**
* Window size value
*/
protected double windowSize;
/**
* Epsilon value
*/
protected double epsilon;
public Lvq3() {
// default values
windowSize = 0.3;
epsilon = 0.1;
}
protected void trainModel(Instances instances) {
// construct the algorithm
LearningRateKernel learningKernel = LearningKernelFactory.factory(learningFunction, learningRate, trainingIterations);
Lvq3Algorithm algorithm = new Lvq3Algorithm(learningKernel, model, random, windowSize, epsilon);
// add event listeners
addEventListenersToAlgorithm(algorithm);
// train the algorithm
algorithm.trainModel(instances, trainingIterations);
}
/**
* Responsible for validating algorithm specific parameters
*
* @throws Exception
*/
protected void validateArguments() throws Exception {
// window size can be anything
// epsilon can be anything
}
/**
* Returns a list of algorithm specific arguments
*
* @return Collection
*/
protected Collection getListOptions() {
ArrayList list = new ArrayList(2);
list.add(new Option("\t" + PARAM_WINDOW_SIZE_DESC, PARAM_WINDOW_SIZE, 1, "-" + PARAM_WINDOW_SIZE + " "));
list.add(new Option("\t" + PARAM_EPSILON_DESC, PARAM_EPSILON, 1, "-" + PARAM_EPSILON + " "));
return list;
}
protected void setArguments(String[] options)
throws Exception {
// window
String windowValue = Utils.getOption(PARAM_WINDOW_SIZE.charAt(0), options);
if (hasValue(windowValue)) {
windowSize = Double.parseDouble(windowValue);
}
// epsilon
String epsilonValue = Utils.getOption(PARAM_EPSILON.charAt(0), options);
if (hasValue(epsilonValue)) {
epsilon = Double.parseDouble(epsilonValue);
}
}
/**
* Set an algorithm specific attribute
*
* @param name - name of attribute
* @param value - value of attribute
* @return boolean - whether or not the attribute was set
* @throws Exception
*/
protected boolean setArgument(String name, String value) throws Exception {
boolean found = false;
if (("-" + PARAM_WINDOW_SIZE).equals(name)) {
windowSize = Double.parseDouble(value);
found = true;
}
else if (("-" + PARAM_EPSILON).equals(name)) {
epsilon = Double.parseDouble(value);
found = true;
}
return found;
}
/**
* Returns a list of attributes and values
*
* @return Collection
*/
protected Collection getAlgorithmOptions() {
ArrayList list = new ArrayList(4);
list.add("-" + PARAM_WINDOW_SIZE);
list.add(Double.toString(windowSize));
list.add("-" + PARAM_EPSILON);
list.add(Double.toString(epsilon));
return list;
}
/**
* Returns information about this algorithm implementation
*
* @return String
*/
public String globalInfo() {
StringBuffer buffer = new StringBuffer(100);
buffer.append("Learning Vector Quantisation (LVQ) - LVQ3.");
buffer.append("The same as LVQ2.1, except only if the classes of the 2 BMUs match, ");
buffer.append("otherwise, the a learning rate modified by the epsilon is used on both BMU's.");
return buffer.toString();
}
/**
* Window size tip
*
* @return
*/
public String windowSizeTipText() {
return PARAM_WINDOW_SIZE_DESC;
}
/**
* Epsilon tip
*
* @return
*/
public String epsilonTipText() {
return PARAM_EPSILON_DESC;
}
/**
* Entry point into the algorithm for direct usage
*
* @param args
*/
public static void main(String[] args) {
runClassifier(new Lvq3(), args);
}
/**
* @return
*/
public double getEpsilon() {
return epsilon;
}
/**
* @return
*/
public double getWindowSize() {
return windowSize;
}
/**
* @param d
*/
public void setEpsilon(double d) {
epsilon = d;
}
/**
* @param d
*/
public void setWindowSize(double d) {
windowSize = d;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy