weka.classifiers.neural.lvq.LvqAlgorithmAncestor Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of wekaclassalgos Show documentation
Show all versions of wekaclassalgos Show documentation
Fork of the following defunct sourceforge.net project: https://sourceforge.net/projects/wekaclassalgos/
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package weka.classifiers.neural.lvq;
import weka.classifiers.neural.common.Constants;
import weka.classifiers.neural.common.learning.LearningKernelFactory;
import weka.classifiers.neural.lvq.initialise.InitialisationFactory;
import weka.classifiers.neural.lvq.initialise.ModelInitialiser;
import weka.classifiers.neural.lvq.model.LvqModel;
import weka.core.Instances;
import weka.core.Option;
import weka.core.SelectedTag;
import weka.core.Utils;
import java.util.Collection;
import java.util.Enumeration;
import java.util.LinkedList;
import java.util.Vector;
/**
* Description: Represents a common ancestor for specific LVQ algorithm
* implementations. Provides common functionality shared between all LVQ
* implementations. Provides a framwork to be implemented by specific LVQ
* implementations for consistent validation, model construction and
* instance classification.
*
*
* Copyright (c) Jason Brownlee 2004
*
*
* @author Jason Brownlee
*/
public abstract class LvqAlgorithmAncestor extends AlgorithmAncestor {
private final static int PARAM_INITIALISATION = 0;
private final static int PARAM_CODEBOOK_VECTORS = 1;
private final static int PARAM_TRAINING_ITERAITONS = 2;
private final static int PARAM_LEARNING_FUNCTION = 3;
private final static int PARAM_LEARNING_RATE = 4;
private final static int PARAM_RANDOM_SEED = 5;
private final static int PARAM_USE_VOTING = 6;
private final static String[] PARAMETERS =
{
"M", // initialisation mode
"C", // total codebook vectors
"I", // training iterations
"L", // learning function
"R", // learning rate
"S", // random number seed
"G" // use voting
};
private final static String[] PARAMETER_NOTES =
{
"", // initialisation mode
"", // total codebook vectors
"", // training iterations
"", // learning function
"", // learning rate
"", // random number seed
"
© 2015 - 2024 Weber Informatics LLC | Privacy Policy