weka.classifiers.neural.lvq.Olvq1 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of wekaclassalgos Show documentation
Show all versions of wekaclassalgos Show documentation
Fork of the following defunct sourceforge.net project: https://sourceforge.net/projects/wekaclassalgos/
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package weka.classifiers.neural.lvq;
import weka.classifiers.neural.common.learning.LearningKernelFactory;
import weka.classifiers.neural.common.learning.LearningRateKernel;
import weka.classifiers.neural.lvq.algorithm.Olvq1Algorithm;
import weka.core.Instances;
import java.util.Collection;
/**
* Description: An implementation of the OLVQ1 algorithm for use in WEKA
*
*
* Copyright (c) Jason Brownlee 2004
*
*
* @author Jason Brownlee
*/
public class Olvq1 extends LvqAlgorithmAncestor {
protected void trainModel(Instances instances) {
// construct the algorithm
LearningRateKernel learningKernel = LearningKernelFactory.factory(learningFunction, learningRate, trainingIterations);
Olvq1Algorithm algorithm = new Olvq1Algorithm(learningKernel, model, random);
// add event listeners
addEventListenersToAlgorithm(algorithm);
// train the algorithm
algorithm.trainModel(instances, trainingIterations);
}
/**
* Validate algorithm specific arguments
*
* @throws Exception
*/
protected void validateArguments() throws Exception {
// do nothing
}
/**
* Return a list of algorithm specific options
*
* @return Collection
*/
protected Collection getListOptions() {
// do nothing
return null;
}
protected void setArguments(String[] options)
throws Exception {
}
/**
* Return a list of algorithm specific options and values
*/
protected Collection getAlgorithmOptions() {
// do nothing
return null;
}
/**
* Return information about this algorithm implementation
*/
public String globalInfo() {
StringBuffer buffer = new StringBuffer(100);
buffer.append("Learning Vector Quantisation (LVQ) - OLVQ1.");
buffer.append("The same as LVQ1, except each codebook vector has its own learning rate. ");
buffer.append("If the BMU has the same class, the individual learning rate is increased, ");
buffer.append("otherwise it is decreased.");
return buffer.toString();
}
/**
* Entry point into the algorithm for direct usage
*
* @param args
*/
public static void main(String[] args) {
runClassifier(new Olvq1(), args);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy