All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.neural.lvq.Olvq1 Maven / Gradle / Ivy

Go to download

Fork of the following defunct sourceforge.net project: https://sourceforge.net/projects/wekaclassalgos/

There is a newer version: 2023.2.8
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

package weka.classifiers.neural.lvq;

import weka.classifiers.neural.common.learning.LearningKernelFactory;
import weka.classifiers.neural.common.learning.LearningRateKernel;
import weka.classifiers.neural.lvq.algorithm.Olvq1Algorithm;
import weka.core.Instances;

import java.util.Collection;

/**
 * Description: An implementation of the OLVQ1 algorithm for use in WEKA
 * 

*
* Copyright (c) Jason Brownlee 2004 *

* * @author Jason Brownlee */ public class Olvq1 extends LvqAlgorithmAncestor { protected void trainModel(Instances instances) { // construct the algorithm LearningRateKernel learningKernel = LearningKernelFactory.factory(learningFunction, learningRate, trainingIterations); Olvq1Algorithm algorithm = new Olvq1Algorithm(learningKernel, model, random); // add event listeners addEventListenersToAlgorithm(algorithm); // train the algorithm algorithm.trainModel(instances, trainingIterations); } /** * Validate algorithm specific arguments * * @throws Exception */ protected void validateArguments() throws Exception { // do nothing } /** * Return a list of algorithm specific options * * @return Collection */ protected Collection getListOptions() { // do nothing return null; } protected void setArguments(String[] options) throws Exception { } /** * Return a list of algorithm specific options and values */ protected Collection getAlgorithmOptions() { // do nothing return null; } /** * Return information about this algorithm implementation */ public String globalInfo() { StringBuffer buffer = new StringBuffer(100); buffer.append("Learning Vector Quantisation (LVQ) - OLVQ1."); buffer.append("The same as LVQ1, except each codebook vector has its own learning rate. "); buffer.append("If the BMU has the same class, the individual learning rate is increased, "); buffer.append("otherwise it is decreased."); return buffer.toString(); } /** * Entry point into the algorithm for direct usage * * @param args */ public static void main(String[] args) { runClassifier(new Olvq1(), args); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy