weka.classifiers.neural.lvq.algorithm.Lvq1Algorithm Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of wekaclassalgos Show documentation
Show all versions of wekaclassalgos Show documentation
Fork of the following defunct sourceforge.net project: https://sourceforge.net/projects/wekaclassalgos/
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package weka.classifiers.neural.lvq.algorithm;
import weka.classifiers.neural.common.RandomWrapper;
import weka.classifiers.neural.common.learning.LearningRateKernel;
import weka.classifiers.neural.lvq.model.CodebookVector;
import weka.classifiers.neural.lvq.model.CommonModel;
import weka.core.Instance;
/**
* Description: Implementation of the LVQ algorithm used to construct a model
* for a given dataset
*
*
* Copyright (c) Jason Brownlee 2004
*
*
* @author Jason Brownlee
*/
public class Lvq1Algorithm extends LVQAlgorithmAncestor {
public Lvq1Algorithm(LearningRateKernel aLearningKernel,
CommonModel aModel,
RandomWrapper aRand) {
super(aLearningKernel, aModel, aRand);
}
protected boolean usingGlobalLearningRate() {
return true;
}
protected void updateModel(Instance aInstance,
double currentLearningRate) {
// reference the bmu
CodebookVector bmu = model.getBmu(aInstance);
// adjust the codebook vector
updateVector(bmu, aInstance, currentLearningRate);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy