All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.neural.lvq.algorithm.Lvq2_1Algorithm Maven / Gradle / Ivy

Go to download

Fork of the following defunct sourceforge.net project: https://sourceforge.net/projects/wekaclassalgos/

There is a newer version: 2023.2.8
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

package weka.classifiers.neural.lvq.algorithm;

import weka.classifiers.neural.common.RandomWrapper;
import weka.classifiers.neural.common.learning.LearningRateKernel;
import weka.classifiers.neural.lvq.model.CodebookVector;
import weka.classifiers.neural.lvq.model.CommonModel;
import weka.classifiers.neural.lvq.model.LvqModel;
import weka.core.Instance;

/**
 * Description: Implementation of the LVQ2.1 algorithm. Makes use of a
 * window size to determine when the top 2 BMU's can be adjusted.
 * 

*
* Copyright (c) Jason Brownlee 2004 *

* * @author Jason Brownlee */ public class Lvq2_1Algorithm extends Lvq1Algorithm { protected final double windowSize; public Lvq2_1Algorithm(LearningRateKernel aLearningKernel, CommonModel aModel, RandomWrapper aRand, double aWindow) { super(aLearningKernel, aModel, aRand); windowSize = aWindow; } /** * Responsbile for updating the model for the given data instance. * The top 2 BMU's are returned, and only updated if they are both in the same class * and the distance is within 1.0 the window size * * @param aInstance * @param lrate */ protected void updateModel(Instance aInstance, double lrate) { // get bmus CodebookVector[] bmus = ((LvqModel) model).get2Bmu(aInstance); // both bmu's must have different classes, one must have the correct // class and the distance ratio must be within the window if (bmusOfDifferentClassesAndInWindow(bmus[0], bmus[1], aInstance)) { // adjust the codebook vector updateVector(bmus[0], aInstance, lrate); updateVector(bmus[1], aInstance, lrate); } } /** * Checks that the two provided codebook vectors are of a different class, * and that one of them has the same class as the data instance. Also checks * that the ration of the vectors distance is within a defined window * * @param bmu1 * @param bmu2 * @param aInstance * @return */ protected boolean bmusOfDifferentClassesAndInWindow(CodebookVector bmu1, CodebookVector bmu2, Instance aInstance) { // both bmu's must have different classes if (!isSameClass(bmu1, bmu2)) { // one of the bmu's classes must match the class of the instance if (isSameClass(aInstance, bmu1) || isSameClass(aInstance, bmu2)) { // min (di/dj, dj/di) > s, where s = (1-w)/(1+w) double distanceRatio = bmu1.getDistance() / bmu2.getDistance(); double window = (1.0 - windowSize) / (1.0 + windowSize); // vectors must be within the window if (distanceRatio > window) { return true; } } } return false; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy