All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.neural.lvq.algorithm.Olvq1Algorithm Maven / Gradle / Ivy

Go to download

Fork of the following defunct sourceforge.net project: https://sourceforge.net/projects/wekaclassalgos/

There is a newer version: 2023.2.8
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

package weka.classifiers.neural.lvq.algorithm;

import weka.classifiers.neural.common.RandomWrapper;
import weka.classifiers.neural.common.learning.LearningRateKernel;
import weka.classifiers.neural.lvq.model.CodebookVector;
import weka.classifiers.neural.lvq.model.CommonModel;
import weka.core.Instance;

/**
 * Description: Implementation of the OLVQ1 algorithm. Uses individual
 * learning rates for each codebook vector to adjust the codebook vectors
 * values
 * 

*
* Copyright (c) Jason Brownlee 2004 *

* * @author Jason Brownlee */ public class Olvq1Algorithm extends LVQAlgorithmAncestor { public Olvq1Algorithm(LearningRateKernel aLearningKernel, CommonModel aModel, RandomWrapper aRand) { super(aLearningKernel, aModel, aRand); // apply the learning rate to all codebook vectors model.applyLearningRateToAllVectors(learningKernel.getInitialLearningRate()); } protected boolean usingGlobalLearningRate() { return false; // individual learning rates } protected void updateModel(Instance aInstance, double aGlobalLearningRate) { // reference the bmu CodebookVector bmu = model.getBmu(aInstance); // adjust the codebook vector updateVector(bmu, aInstance, bmu.getIndividualLearningRate()); // adjust the learning rate adjustIndividualLearningRate(bmu, aInstance); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy