weka.classifiers.neural.lvq.initialise.InitialisationFactory Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of wekaclassalgos Show documentation
Show all versions of wekaclassalgos Show documentation
Fork of the following defunct sourceforge.net project: https://sourceforge.net/projects/wekaclassalgos/
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package weka.classifiers.neural.lvq.initialise;
import weka.classifiers.neural.common.RandomWrapper;
import weka.core.Instances;
import weka.core.Tag;
/**
* Date: 25/05/2004
* File: InitialisationFactory.java
*
* @author Jason Brownlee
*/
public class InitialisationFactory {
public final static int INITALISE_TRAINING_PROPORTIONAL = 1;
public final static int INITALISE_TRAINING_EVEN = 2;
public final static int INITALISE_RANDOM_VALUES = 3;
public final static int INITALISE_SIMPLE_KMEANS = 4;
public final static int INITALISE_FARTHEST_FIRST = 5;
public final static int INITALISE_KNN = 6;
public final static Tag[] TAGS_MODEL_INITALISATION =
{
new Tag(INITALISE_TRAINING_PROPORTIONAL, "Random Training Data Proportional"),
new Tag(INITALISE_TRAINING_EVEN, "Random Training Data Even"),
new Tag(INITALISE_RANDOM_VALUES, "Random Values In Range"),
new Tag(INITALISE_SIMPLE_KMEANS, "Simple KMeans"),
new Tag(INITALISE_FARTHEST_FIRST, "Farthest First"),
new Tag(INITALISE_KNN, "K-Nearest Neighbour Even")
};
public final static String DESCRIPTION;
static {
StringBuffer buffer = new StringBuffer();
buffer.append("(");
for (int i = 0; i < TAGS_MODEL_INITALISATION.length; i++) {
buffer.append(TAGS_MODEL_INITALISATION[i].getID());
buffer.append("==");
buffer.append(TAGS_MODEL_INITALISATION[i].getReadable());
if (i != TAGS_MODEL_INITALISATION.length - 1) {
buffer.append(", ");
}
}
buffer.append(")");
DESCRIPTION = buffer.toString();
}
public final static ModelInitialiser factory(int aInitialisationMode,
RandomWrapper aRand,
Instances aInstances,
int totalCodebookVectors) {
ModelInitialiser initalise = null;
switch (aInitialisationMode) {
case INITALISE_TRAINING_PROPORTIONAL: {
initalise = new RandomProportional(aRand, aInstances);
break;
}
case INITALISE_TRAINING_EVEN: {
initalise = new RandomEven(aRand, aInstances);
break;
}
case INITALISE_RANDOM_VALUES: {
initalise = new RandomValues(aRand, aInstances);
break;
}
case INITALISE_SIMPLE_KMEANS: {
initalise = new SimpleKMeansInitialiser(aRand, aInstances, totalCodebookVectors);
break;
}
case INITALISE_FARTHEST_FIRST: {
initalise = new FarthestFirstInitialiser(aRand, aInstances, totalCodebookVectors);
break;
}
case INITALISE_KNN: {
initalise = new KnnInitialiser(aRand, aInstances);
break;
}
default: {
throw new RuntimeException("Unknown initialisation mode: " + aInitialisationMode);
}
}
return initalise;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy