All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.neural.lvq.initialise.RandomEven Maven / Gradle / Ivy

Go to download

Fork of the following defunct sourceforge.net project: https://sourceforge.net/projects/wekaclassalgos/

There is a newer version: 2023.2.8
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

package weka.classifiers.neural.lvq.initialise;

import weka.classifiers.neural.common.RandomWrapper;
import weka.core.Instance;
import weka.core.Instances;

import java.util.LinkedList;

/**
 * Date: 25/05/2004
 * File: RandomEven.java
 *
 * @author Jason Brownlee
 */
public class RandomEven extends CommonInitialiser {

  protected final LinkedList[] trainingDataClassDistribution;

  protected int roundRobbinIndex;

  private boolean fullCircle;

  public RandomEven(RandomWrapper aRand, Instances aInstances) {
    super(aRand, aInstances);

    trainingDataClassDistribution = new LinkedList[numClasses];
    prepareTrainingDataClassDistributions();
  }

  protected void prepareTrainingDataClassDistributions() {
    for (int i = 0; i < trainingInstances.numInstances(); i++) {
      int classIndex = (int) trainingInstances.instance(i).classValue();

      if (trainingDataClassDistribution[classIndex] == null) {
	trainingDataClassDistribution[classIndex] = new LinkedList();
      }

      trainingDataClassDistribution[classIndex].add(trainingInstances.instance(i));
    }
  }

  public double[] getAttributes() {
    // select an instance
    Instance instance = selectInstance();
    // construct a codebook vector from the selected instance
    double[] attributes = instance.toDoubleArray();
    return attributes;
  }

  protected Instance selectInstance() {
    Instance selectedInstance = null;
    int startRoundRobbinValue = roundRobbinIndex;

    while (selectedInstance == null && !fullCircle) {
      // check for an empty class on the current round robbin
      if (trainingDataClassDistribution[roundRobbinIndex] == null) {
	incrementRoundRobbin();
	// check for full circle
	if (roundRobbinIndex == startRoundRobbinValue) {
	  fullCircle = true;
	}
      }
      // check if all vectors from the current class have been included in the model
      else if (trainingDataClassDistribution[roundRobbinIndex].isEmpty()) {
	incrementRoundRobbin();
	// check for full circle
	if (roundRobbinIndex == startRoundRobbinValue) {
	  fullCircle = true;
	}
      }
      // the current selection can be used
      else {
	int selection = makeRandomSelection(trainingDataClassDistribution[roundRobbinIndex].size());
	selectedInstance = (Instance) trainingDataClassDistribution[roundRobbinIndex].remove(selection);
	incrementRoundRobbin();
      }
    }

    if (fullCircle) {
      // select any random instance
      int selection = makeRandomSelection(totalInstances);
      selectedInstance = trainingInstances.instance(selection);
    }

    return selectedInstance;
  }

  protected void incrementRoundRobbin() {
    if (++roundRobbinIndex >= numClasses) {
      roundRobbinIndex = 0;
    }
  }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy