weka.classifiers.neural.singlelayerperceptron.WidrowHoff Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of wekaclassalgos Show documentation
Show all versions of wekaclassalgos Show documentation
Fork of the following defunct sourceforge.net project: https://sourceforge.net/projects/wekaclassalgos/
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package weka.classifiers.neural.singlelayerperceptron;
import weka.classifiers.neural.common.NeuralModel;
import weka.classifiers.neural.common.SimpleNeuron;
import weka.classifiers.neural.common.learning.LearningKernelFactory;
import weka.classifiers.neural.common.learning.LearningRateKernel;
import weka.classifiers.neural.common.training.TrainerFactory;
import weka.classifiers.neural.common.transfer.TransferFunction;
import weka.classifiers.neural.common.transfer.TransferFunctionFactory;
import weka.classifiers.neural.singlelayerperceptron.algorithm.WidrowHoffAlgorithm;
import weka.core.Instances;
/**
* Title: Weka Neural Implementation
* Description: ...
* Copyright: Copyright (c) 2003
* Company: N/A
*
* @author Jason Brownlee
* @version 1.0
*/
public class WidrowHoff extends Perceptron {
public WidrowHoff() {
// set static values
transferFunction = TransferFunctionFactory.TRANSFER_STEP; // must be step
trainingMode = TrainerFactory.TRAINER_ONLINE;
// set good initial values
trainingIterations = 500;
biasInput = SimpleNeuron.DEFAULT_BIAS_VALUE;
learningRate = 0.1;
learningRateFunction = LearningKernelFactory.LEARNING_FUNCTION_LINEAR;
randomNumberSeed = 0;
}
protected NeuralModel prepareAlgorithm(Instances instances) throws Exception {
// prepare the transfer function
TransferFunction function = TransferFunctionFactory.factory(transferFunction);
// prepare the learning rate function
LearningRateKernel lrateFunction = LearningKernelFactory.factory(learningRateFunction, learningRate, trainingIterations);
// construct the algorithm
WidrowHoffAlgorithm algorithm = new WidrowHoffAlgorithm(function, biasInput, rand, lrateFunction, instances);
return algorithm;
}
public String globalInfo() {
StringBuffer buffer = new StringBuffer();
buffer.append("Single Layer Perceptron : Perceptron Learning Rule, Binary inputs, Step transfer function");
return buffer.toString();
}
/**
* Entry point into the algorithm for direct usage
*
* @param args
*/
public static void main(String[] args) {
runClassifier(new WidrowHoff(), args);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy