All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.neural.singlelayerperceptron.WidrowHoff Maven / Gradle / Ivy

Go to download

Fork of the following defunct sourceforge.net project: https://sourceforge.net/projects/wekaclassalgos/

There is a newer version: 2023.2.8
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

package weka.classifiers.neural.singlelayerperceptron;

import weka.classifiers.neural.common.NeuralModel;
import weka.classifiers.neural.common.SimpleNeuron;
import weka.classifiers.neural.common.learning.LearningKernelFactory;
import weka.classifiers.neural.common.learning.LearningRateKernel;
import weka.classifiers.neural.common.training.TrainerFactory;
import weka.classifiers.neural.common.transfer.TransferFunction;
import weka.classifiers.neural.common.transfer.TransferFunctionFactory;
import weka.classifiers.neural.singlelayerperceptron.algorithm.WidrowHoffAlgorithm;
import weka.core.Instances;

/**
 * 

Title: Weka Neural Implementation

*

Description: ...

*

Copyright: Copyright (c) 2003

*

Company: N/A

* * @author Jason Brownlee * @version 1.0 */ public class WidrowHoff extends Perceptron { public WidrowHoff() { // set static values transferFunction = TransferFunctionFactory.TRANSFER_STEP; // must be step trainingMode = TrainerFactory.TRAINER_ONLINE; // set good initial values trainingIterations = 500; biasInput = SimpleNeuron.DEFAULT_BIAS_VALUE; learningRate = 0.1; learningRateFunction = LearningKernelFactory.LEARNING_FUNCTION_LINEAR; randomNumberSeed = 0; } protected NeuralModel prepareAlgorithm(Instances instances) throws Exception { // prepare the transfer function TransferFunction function = TransferFunctionFactory.factory(transferFunction); // prepare the learning rate function LearningRateKernel lrateFunction = LearningKernelFactory.factory(learningRateFunction, learningRate, trainingIterations); // construct the algorithm WidrowHoffAlgorithm algorithm = new WidrowHoffAlgorithm(function, biasInput, rand, lrateFunction, instances); return algorithm; } public String globalInfo() { StringBuffer buffer = new StringBuffer(); buffer.append("Single Layer Perceptron : Perceptron Learning Rule, Binary inputs, Step transfer function"); return buffer.toString(); } /** * Entry point into the algorithm for direct usage * * @param args */ public static void main(String[] args) { runClassifier(new WidrowHoff(), args); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy