All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.neural.singlelayerperceptron.algorithm.PerceptronAlgorithm Maven / Gradle / Ivy

Go to download

Fork of the following defunct sourceforge.net project: https://sourceforge.net/projects/wekaclassalgos/

There is a newer version: 2023.2.8
Show newest version
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

package weka.classifiers.neural.singlelayerperceptron.algorithm;

import weka.classifiers.neural.common.RandomWrapper;
import weka.classifiers.neural.common.SimpleNeuron;
import weka.classifiers.neural.common.learning.LearningRateKernel;
import weka.classifiers.neural.common.transfer.TransferFunction;
import weka.core.Instance;
import weka.core.Instances;


/**
 * 

Title: Weka Neural Implementation

*

Description: ...

*

Copyright: Copyright (c) 2003

*

Company: N/A

* * @author Jason Brownlee * @version 1.0 */ public class PerceptronAlgorithm extends SLPAlgorithmAncestor { public PerceptronAlgorithm(TransferFunction aTransfer, double aBiasInput, RandomWrapper aRand, LearningRateKernel aKernel, Instances trainingInstances) { super(aTransfer, aBiasInput, aRand, aKernel, trainingInstances); } protected void calculateWeightErrors(Instance instance, SimpleNeuron neuron, double expected, double aLearningRate) { // perceptron learning rule: delta = LearningRate * (Target - Output) * Input int offset = 0; // calculate the output for the neuron double activation = activate(neuron, instance); double output = transfer(activation); // get the node weights double[] weights = neuron.getWeights(); // udpate neuron weights for (int i = 0; i < instance.numAttributes(); i++) { // class is not an attribute if (i != instance.classIndex()) { // never adjust the weight connected to a missing value // it is not included in thew activation, thus has no impact in the result if (instance.isMissing(i)) { offset++; } else { // perceptron learning rule: // delta = LearningRate * (Target - Output) * Input weights[offset++] += (aLearningRate * (expected - output) * instance.value(i)); } } } // update the weight on this bias offset = neuron.getBiasIndex(); weights[offset] += (aLearningRate * (expected - output) * neuron.getBiasInputValue()); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy