All Downloads are FREE. Search and download functionalities are using the official Maven repository.

weka.classifiers.neural.common.WekaAlgorithmAncestor Maven / Gradle / Ivy

Go to download

Fork of the following defunct sourceforge.net project: https://sourceforge.net/projects/wekaclassalgos/

The newest version!
/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see .
 */

package weka.classifiers.neural.common;

import weka.classifiers.AbstractClassifier;
import weka.classifiers.neural.common.learning.LearningKernelFactory;
import weka.classifiers.neural.common.training.NeuralTrainer;
import weka.classifiers.neural.common.training.TrainerFactory;
import weka.classifiers.neural.common.transfer.TransferFunctionFactory;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.WeightedInstancesHandler;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Enumeration;
import java.util.LinkedList;
import java.util.List;
import java.util.Vector;

/**
 * 

Title: Weka Neural Implementation

*

Description: ...

*

Copyright: Copyright (c) 2003

*

Company: N/A

* * @author Jason Brownlee * @version 1.0 */ public abstract class WekaAlgorithmAncestor extends AbstractClassifier implements WeightedInstancesHandler { private final static int PARAM_TRAINING_ITERATIONS = 0; private final static int PARAM_LEARNING_RATE = 1; private final static int PARAM_BIAS_CONSTANT = 2; private final static int PARAM_RANDOM_SEED = 3; // param flags private final static String[] PARAMETERS = { "I", // iterations "L", // learning rate "B", // bias constant "R" // random seed }; // param flags private final static String[] PARAMETER_NOTES = { "", // iterations "", // learning rate "", // bias constant "" // random seed }; // descriptions for all parameters private final static String[] PARAM_DESCRIPTIONS = { "Number of training iterations (anywhere from a few hundred to a few thousand)", "Learning Rate - between 0.05 and 0.75 (recommend 0.1 for most cases)", "Bias constant input, (recommend 1.0, use 0.0 for no bias constant input)", Constants.DESCRIPTION_RANDOM_SEED }; // the model protected NeuralModel model; protected RandomWrapper rand; // random number seed protected long randomNumberSeed = 0; // learning rate protected double learningRate = 0.0; // learning rate function protected int learningRateFunction = 0; // bias input constant protected double biasInput = 0.0; // transfer function protected int transferFunction = 0; // training mode protected int trainingMode = 0; // number of training iterations protected int trainingIterations = 0; // stats on the dataset used to build the model protected int numInstances = 0; protected int numClasses = 0; protected int numAttributes = 0; protected boolean classIsNominal = false; public abstract String globalInfo(); protected abstract void validateArguments() throws Exception; protected abstract NeuralModel prepareAlgorithm(Instances instances) throws Exception; protected abstract Collection




© 2015 - 2025 Weber Informatics LLC | Privacy Policy