weka.classifiers.neural.common.training.BatchTrainer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of wekaclassalgos Show documentation
Show all versions of wekaclassalgos Show documentation
Fork of the following defunct sourceforge.net project: https://sourceforge.net/projects/wekaclassalgos/
The newest version!
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package weka.classifiers.neural.common.training;
import weka.classifiers.neural.common.BatchTrainableNeuralModel;
import weka.classifiers.neural.common.NeuralModel;
import weka.classifiers.neural.common.RandomWrapper;
import weka.core.Instance;
import weka.core.Instances;
import java.util.Enumeration;
/**
* Title: Weka Neural Implementation
* Description: ...
* Copyright: Copyright (c) 2003
* Company: N/A
*
* @author Jason Brownlee
* @version 1.0
*/
public class BatchTrainer extends NeuralTrainer {
public BatchTrainer(RandomWrapper aRand) {
super(aRand);
}
public void trainModel(NeuralModel aModel,
Instances aInstances,
int numIterations) {
BatchTrainableNeuralModel model = (BatchTrainableNeuralModel) aModel;
Instances epochInstances = new Instances(aInstances);
// train until we can stop
for (int iteration = 0; iteration < numIterations; iteration++) {
// prepare the model for an epoch
aModel.startingEpoch();
// get the learning rate
double learingRate = aModel.getLearningRate(iteration);
// randomize the dataset
epochInstances.randomize(rand.getRand());
// perform a single epoch
Enumeration e = epochInstances.enumerateInstances();
while (e.hasMoreElements()) {
// get an instance
Instance instance = (Instance) e.nextElement();
// calculate weight changes
model.calculateWeightErrors(instance, learingRate);
}
// apply and clear weight changes at the end of the epoch
model.applyWeightDeltas(learingRate);
// finished epoch
aModel.finishedEpoch(epochInstances, learingRate);
}
}
} © 2015 - 2025 Weber Informatics LLC | Privacy Policy