weka.classifiers.neural.lvq.Lvq3 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of wekaclassalgos Show documentation
Show all versions of wekaclassalgos Show documentation
Fork of the following defunct sourceforge.net project: https://sourceforge.net/projects/wekaclassalgos/
The newest version!
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package weka.classifiers.neural.lvq;
import weka.classifiers.neural.common.Constants;
import weka.classifiers.neural.common.learning.LearningKernelFactory;
import weka.classifiers.neural.common.learning.LearningRateKernel;
import weka.classifiers.neural.lvq.algorithm.Lvq3Algorithm;
import weka.core.Instances;
import weka.core.Option;
import weka.core.Utils;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
/**
* Description: Implementation of the LVQ3 algorithm for use in WEKA
*
*
* Copyright (c) Jason Brownlee 2004
*
*
* @author Jason Brownlee
*/
public class Lvq3 extends LvqAlgorithmAncestor {
/**
* Window size parameter
*/
private final static String PARAM_WINDOW_SIZE = "W";
/**
* Epsilon parameter
*/
private final static String PARAM_EPSILON = "E";
/**
* Window size parameter description
*/
private final static String PARAM_WINDOW_SIZE_DESC = Constants.DESCRIPTION_WINDOW_SIZE;
/**
* Epsilon parameter description
*/
private final static String PARAM_EPSILON_DESC = Constants.DESCRIPTION_EPSILON;
/**
* Window size value
*/
protected double windowSize;
/**
* Epsilon value
*/
protected double epsilon;
public Lvq3() {
// default values
windowSize = 0.3;
epsilon = 0.1;
}
protected void trainModel(Instances instances) {
// construct the algorithm
LearningRateKernel learningKernel = LearningKernelFactory.factory(learningFunction, learningRate, trainingIterations);
Lvq3Algorithm algorithm = new Lvq3Algorithm(learningKernel, model, random, windowSize, epsilon);
// add event listeners
addEventListenersToAlgorithm(algorithm);
// train the algorithm
algorithm.trainModel(instances, trainingIterations);
}
/**
* Responsible for validating algorithm specific parameters
*
* @throws Exception
*/
protected void validateArguments() throws Exception {
// window size can be anything
// epsilon can be anything
}
/**
* Returns a list of algorithm specific arguments
*
* @return Collection
*/
protected Collection © 2015 - 2025 Weber Informatics LLC | Privacy Policy