weka.classifiers.neural.lvq.algorithm.LVQAlgorithmAncestor Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of wekaclassalgos Show documentation
Show all versions of wekaclassalgos Show documentation
Fork of the following defunct sourceforge.net project: https://sourceforge.net/projects/wekaclassalgos/
The newest version!
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package weka.classifiers.neural.lvq.algorithm;
import weka.classifiers.neural.common.RandomWrapper;
import weka.classifiers.neural.common.learning.LearningRateKernel;
import weka.classifiers.neural.lvq.model.CodebookVector;
import weka.classifiers.neural.lvq.model.CommonModel;
import weka.core.Instance;
import weka.core.Instances;
/**
* Description: Common ancestor for LVQ algorithm implementations,
* specifically used for building models from training datasets
*
*
* Copyright (c) Jason Brownlee 2004
*
*
* @author Jason Brownlee
*/
public abstract class LVQAlgorithmAncestor extends CommonAncestor {
public LVQAlgorithmAncestor(LearningRateKernel aLearningKernel,
CommonModel aModel,
RandomWrapper aRand) {
super(aLearningKernel, aModel, aRand, true);
}
protected abstract void updateModel(Instance aInstances, double currentLearningRate);
protected abstract boolean usingGlobalLearningRate();
public void trainModel(Instances aInstances, int numIterations) {
// initialise to the inital learning rate
double currentLearningRate = learningKernel.getInitialLearningRate();
for (int i = 0; i < numIterations; i++) {
// attempt to avoid an unncessary calculation
if (usingGlobalLearningRate()) {
// learning rate for this iteration
currentLearningRate = learningKernel.currentLearningRate(i);
}
// select a random data instance
Instance selectedInstance = selectRandomInstance(aInstances);
// update the model using LVQ algorithm
updateModel(selectedInstance, currentLearningRate);
// send events
activateEpochEventListeners(i, numIterations);
}
}
/**
* Used for adjusting individual bmu learning rates consistantly
*
* @param aBmu
* @param aInstance
*/
protected void adjustIndividualLearningRate(CodebookVector aBmu, Instance aInstance) {
double rate = aBmu.getIndividualLearningRate();
if (isSameClass(aInstance, aBmu)) {
// decrease the rate because it was correct
aBmu.setIndividualLearningRate(rate / (1.0 + rate));
}
else {
// increase the rate because it was incorrect
aBmu.setIndividualLearningRate(rate / (1.0 - rate));
// check for getting two large
if (aBmu.getIndividualLearningRate() > learningKernel.getInitialLearningRate()) {
aBmu.setIndividualLearningRate(learningKernel.getInitialLearningRate());
}
}
}
} © 2015 - 2025 Weber Informatics LLC | Privacy Policy