weka.classifiers.neural.lvq.initialise.CommonInitialiser Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of wekaclassalgos Show documentation
Show all versions of wekaclassalgos Show documentation
Fork of the following defunct sourceforge.net project: https://sourceforge.net/projects/wekaclassalgos/
The newest version!
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package weka.classifiers.neural.lvq.initialise;
import weka.classifiers.neural.common.RandomWrapper;
import weka.classifiers.neural.lvq.model.CodebookVector;
import weka.classifiers.neural.lvq.vectordistance.AttributeDistance;
import weka.classifiers.neural.lvq.vectordistance.DistanceFactory;
import weka.core.Instances;
/**
* Date: 25/05/2004
* File: CommonRandomInitialiser.java
*
* @author Jason Brownlee
*/
public abstract class CommonInitialiser implements ModelInitialiser {
protected final RandomWrapper rand;
protected final Instances trainingInstances;
protected final int numClasses;
protected final int numAttributes;
protected final int classIndex;
protected final int totalInstances;
public CommonInitialiser(RandomWrapper aRand, Instances aInstances) {
rand = aRand;
trainingInstances = aInstances;
numClasses = trainingInstances.classAttribute().numValues();
totalInstances = trainingInstances.numInstances();
classIndex = trainingInstances.classIndex();
numAttributes = trainingInstances.numAttributes();
}
public void initialiseCodebookVector(CodebookVector aCodebookVector) {
double[] attributes = getAttributes();
// repace any missing values
for (int j = 0; j < attributes.length; j++) {
if (weka.core.Utils.isMissingValue(attributes[j])) {
// replace with a random double - shown to produce better results
// because it assumes nothing about the data
attributes[j] = rand.getRand().nextDouble();
}
}
// initialise the codebook vector
aCodebookVector.initialise(attributes, classIndex, numClasses);
}
public abstract double[] getAttributes();
public AttributeDistance[] getAttributeDistanceList() {
return DistanceFactory.getAttributeDistanceList(trainingInstances);
}
public String[] getClassLables() {
String[] classLabels = new String[numClasses];
// cache each class double value at its index
for (int i = 0; i < classLabels.length; i++) {
classLabels[i] = trainingInstances.classAttribute().value(i);
}
return classLabels;
}
protected int makeRandomSelection(int aTotalChoices) {
// get random number
int selection = rand.getRand().nextInt();
// max positive
selection = Math.abs(selection);
// transform to within required bounds
selection = (selection % aTotalChoices);
return selection;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy