weka.classifiers.neural.lvq.initialise.RandomValues Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of wekaclassalgos Show documentation
Show all versions of wekaclassalgos Show documentation
Fork of the following defunct sourceforge.net project: https://sourceforge.net/projects/wekaclassalgos/
The newest version!
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package weka.classifiers.neural.lvq.initialise;
import weka.classifiers.neural.common.RandomWrapper;
import weka.core.Instances;
/**
* Date: 26/05/2004
* File: RandomValues.java
*
* @author Jason Brownlee
*/
public class RandomValues extends CommonInitialiser {
public RandomValues(RandomWrapper aRand, Instances aInstances) {
super(aRand, aInstances);
}
public double[] getAttributes() {
double[] attributes = new double[numAttributes];
for (int i = 0; i < attributes.length; i++) {
double value = 0.0;
// check for nominal
if (trainingInstances.attribute(i).isNominal()) {
int range = trainingInstances.attribute(i).numValues();
// select a random class value (0 to range-1)
value = makeRandomSelection(range);
}
// generate a random value in the correct range
else if (trainingInstances.attribute(i).isNumeric()) {
double max = trainingInstances.attributeStats(i).numericStats.max;
double min = trainingInstances.attributeStats(i).numericStats.min;
// generate a random value in the range of the attribute
value = (min + ((max - min) * (rand.getRand().nextDouble() / 1.0)));
}
attributes[i] = value;
}
return attributes;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy