kernels.broadcast_template.cl Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of neureka Show documentation
Show all versions of neureka Show documentation
A platform independent tensor library written in Java.
The newest version!
/*
The kernel defined in this file takes two tensors / nd-arrays and performs a broadcast operation
on them if the shapes of both tensors allow this type operation.
For example, the following shapes allow broadcasting,
which produce the expected output shapes:
( 3, 2, 1 )o( 1, 1, 5 ) = ( 3, 2, 5 )
( 1, 1, 4 )o( 3, 1, 1 ) = ( 3, 1, 4 )
Similar as the kernel within "operator_template.cl", this kernel can be used
for operators like "+", "-", "*", ...
*/
//======================================================================================================================
void _cfg_of_cfg(__global int* cfg, int* prv_cfg, int rank);
int _i_of_i(int i, int* config, int rank);
int _i_of_idx_on_tln(int* conf, int rank);
//======================================================================================================================
__kernel void broadcast_template(
//-==-//__global float *frn, __global int *frn_conf,
__global float *drn, __global int *drn_conf,
__global float *src1, __global int *src1_conf,
__global float *src2, __global int *src2_conf,
int rank,
int d
){
int prv_drn_cfg[32]; _cfg_of_cfg(drn_conf, prv_drn_cfg, rank);
int prv_src1_cfg[32]; _cfg_of_cfg(src1_conf, prv_src1_cfg, rank);
int prv_src2_cfg[32]; _cfg_of_cfg(src2_conf, prv_src2_cfg, rank);
//-==-//int prv_frn_cfg[32]; _cfg_of_cfg(frn_conf, prv_frn_cfg, rank);
int p_shp = 0 * rank;
int p_tln = 1 * rank;
int p_idm = 2 * rank;
int p_idx = 3 * rank;
int di = _i_of_i(get_global_id( 0 ), prv_drn_cfg, rank);
//increment src accordingly:
if(d < 0){
int ri = 0;
while (ri < rank) {
if (prv_src1_cfg[p_shp+ri] == prv_src2_cfg[p_shp+ri]) {
prv_src1_cfg[p_idx+ri] = prv_drn_cfg[p_idx+ri];
prv_src2_cfg[p_idx+ri] = prv_drn_cfg[p_idx+ri];
} else if (prv_src1_cfg[p_shp+ri] > prv_src2_cfg[p_shp+ri]) {
prv_src1_cfg[p_idx+ri] = prv_drn_cfg[p_idx+ri];
prv_src2_cfg[p_idx+ri] = 0;
} else if(prv_src1_cfg[p_shp+ri] < prv_src2_cfg[p_shp+ri]){
prv_src1_cfg[p_idx+ri] = 0;
prv_src2_cfg[p_idx+ri] = prv_drn_cfg[p_idx+ri];
}
ri++;
}
//----------
// multiplication:
float value = 0;
//-==-//
value += src1[_i_of_idx_on_tln(prv_src1_cfg, rank)] * src2[_i_of_idx_on_tln(prv_src2_cfg, rank)];
//-==-//
//set _value in drn:
drn[di] = value;
} else {// conv
int ri = 0;
while (ri < rank) {
if (prv_drn_cfg[p_shp+ri] == prv_src1_cfg[p_shp+ri]) {
prv_src1_cfg[p_idx+ri] = prv_drn_cfg[p_idx+ri];
prv_src2_cfg[p_idx+ri] = prv_drn_cfg[p_idx+ri];
if ( prv_src2_cfg[p_shp+ri] == 1 ) prv_src2_cfg[p_idx+ri] = 0;
else prv_src2_cfg[p_idx+ri] = prv_drn_cfg[p_idx+ri];
} else if (prv_drn_cfg[p_shp+ri] > prv_src1_cfg[p_shp+ri]) {
prv_src1_cfg[p_idx+ri] = 0;
prv_src2_cfg[p_idx+ri] = prv_drn_cfg[p_idx+ri];
}
ri++;
}
//----------
// actual broadcasting:
float value = 0;
bool running = true;
bool incrementing = false;
while ( running ) {
ri = ( ri == rank ? 0 : ri );
if ( !incrementing ) {
//-==-//
value += src1[_i_of_idx_on_tln(prv_src1_cfg, rank)] * src2[_i_of_idx_on_tln(prv_src2_cfg, rank)];
//-==-//
incrementing = true;
ri=0;
} else { // incrementing:
if ( prv_drn_cfg[p_shp+ri] < prv_src1_cfg[p_shp+ri] ) {
prv_src1_cfg[p_idx+ri]++;
prv_src2_cfg[p_idx+ri]++;
if ( prv_src1_cfg[p_idx+ri] == prv_src1_cfg[p_shp+ri] ) {
prv_src1_cfg[p_idx+ri] = 0;
prv_src2_cfg[p_idx+ri] = 0;
running = (ri != rank - 1);
ri++;
} else
incrementing = false; // return to calculation!
} else {
running = ( ri != rank - 1 );
ri++;
}
}
}
drn[di] = value;
}
}
//======================================================================================================================
© 2015 - 2025 Weber Informatics LLC | Privacy Policy