
smile.feature.FeatureTransform Maven / Gradle / Ivy
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.feature;
import smile.data.Attribute;
import smile.data.NumericAttribute;
/**
* Feature transformation. In general, learning algorithms benefit from
* standardization of the data set. If some outliers are present in the
* set, robust transformers are more appropriate.
*
* @author Haifeng Li
*/
public abstract class FeatureTransform {
/**
* If false, try to avoid a copy and do inplace transformation instead.
*/
protected boolean copy;
/** Constructor. Inplace transformation. */
public FeatureTransform() {
this(false);
}
/**
* Constructor.
* @param copy If false, try to avoid a copy and do inplace scaling instead.
*/
public FeatureTransform(boolean copy) {
this.copy = copy;
}
/**
* Learns transformation parameters from a dataset.
* All features are assumed numeric.
* @param data The training data.
*/
public void learn(double[][] data) {
int p = data[0].length;
Attribute[] attributes = new Attribute[p];
for (int i = 0; i < p; i++) {
attributes[i] = new NumericAttribute("V"+i);
}
learn(attributes, data);
}
/**
* Learns transformation parameters from a dataset.
* @param attributes The variable attributes. Of which, numeric variables
* will be standardized.
* @param data The training data to learn scaling parameters.
* The data will not be modified.
*/
public abstract void learn(Attribute[] attributes, double[][] data);
/**
* Transform a feature vector.
* @param x a feature vector.
* @return the transformed feature value.
*/
public abstract double[] transform(double[] x);
/**
* Transform an array of feature vectors.
* @param x an array of feature vectors. The feature
* vectors may be modified on output if copy is false.
* @return the transformed feature vectors.
*/
public double[][] transform(double[][] x) {
double[][] y = new double[x.length][];
for (int i = 0; i < y.length; i++) {
y[i] = transform(x[i]);
}
return y;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy