
smile.feature.SparseOneHotEncoder Maven / Gradle / Ivy
/*******************************************************************************
* Copyright (c) 2010 Haifeng Li
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
package smile.feature;
import smile.data.Attribute;
import smile.data.NominalAttribute;
/**
* Encode categorical integer features using sparse one-hot scheme.
* All variables should be nominal attributes and will be converted to binary
* dummy variables in a compact representation in which only indices of nonzero
* elements are stored in an integer array. In Maximum Entropy Classifier,
* the data are expected to store in this format.
*
* @author Haifeng Li
*/
public class SparseOneHotEncoder {
/**
* The variable attributes.
*/
private NominalAttribute[] attributes;
/**
* Starting index for each nominal attribute.
*/
private int[] base;
/**
* Constructor.
* @param attributes the variable attributes. All of them have to be
* nominal attributes.
*/
public SparseOneHotEncoder(Attribute[] attributes) {
int p = attributes.length;
this.attributes = new NominalAttribute[p];
base = new int[p];
for (int i = 0; i < p; i++) {
Attribute attribute = attributes[i];
if (attribute instanceof NominalAttribute) {
NominalAttribute nominal = (NominalAttribute) attribute;
this.attributes[i] = nominal;
if (i < p-1) {
base[i+1] = base[i] + nominal.size();
}
} else {
throw new IllegalArgumentException("Non-nominal attribute: " + attribute);
}
}
}
/**
* Generates the compact representation of sparse binary features for given object.
* @param x an object of interest.
* @return an integer array of nonzero binary features.
*/
public int[] feature(double[] x) {
if (x.length != attributes.length) {
throw new IllegalArgumentException(String.format("Invalid feature vector size %d, expected %d", x.length, attributes.length));
}
int[] features = new int[attributes.length];
for (int i = 0; i < features.length; i++) {
int f = (int) x[i];
if (Math.floor(x[i]) != x[i] || f < 0 || f >= attributes[i].size()) {
throw new IllegalArgumentException(String.format("Invalid value of attribute %s: %d", attributes[i].toString(), f));
}
features[i] = f + base[i];
}
return features;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy