smile.classification.Classifier Maven / Gradle / Ivy
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.classification;
import java.io.Serializable;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.Properties;
import java.util.function.ToDoubleFunction;
import java.util.function.ToIntFunction;
import java.util.stream.IntStream;
import smile.data.Dataset;
import smile.data.Instance;
import smile.math.MathEx;
/**
* A classifier assigns an input object into one of a given number of categories.
* The input object is formally termed an instance, and the categories are
* termed classes. The instance is usually described by a vector of features,
* which together constitute a description of all known characteristics of the
* instance.
*
* Classification normally refers to a supervised procedure, i.e. a procedure
* that produces an inferred function to predict the output value of new
* instances based on a training set of pairs consisting of an input object
* and a desired output value. The inferred function is called a classifier
* if the output is discrete or a regression function if the output is
* continuous.
*
* @param the type of model input object.
*
* @author Haifeng Li
*/
public interface Classifier extends ToIntFunction, ToDoubleFunction, Serializable {
/**
* The classifier trainer.
* @param the type of model input object.
* @param the type of model.
*/
interface Trainer> {
/**
* Fits a classification model with the default hyper-parameters.
* @param x the training samples.
* @param y the training labels.
* @return the model
*/
default M fit(T[] x, int[] y) {
Properties params = new Properties();
return fit(x, y, params);
}
/**
* Fits a classification model.
* @param x the training samples.
* @param y the training labels.
* @param params the hyper-parameters.
* @return the model
*/
M fit(T[] x, int[] y, Properties params);
}
/**
* Returns the number of classes.
* @return the number of classes.
*/
int numClasses();
/**
* Returns the class labels.
* @return the class labels.
*/
int[] classes();
/**
* Predicts the class label of an instance.
*
* @param x the instance to be classified.
* @return the predicted class label.
*/
int predict(T x);
/**
* The raw prediction score.
*
* @param x the instance to be classified.
* @return the raw prediction score.
*/
default double score(T x) {
throw new UnsupportedOperationException();
}
@Override
default int applyAsInt(T x) {
return predict(x);
}
@Override
default double applyAsDouble(T x) {
return score(x);
}
/**
* Predicts the class labels of an array of instances.
*
* @param x the instances to be classified.
* @return the predicted class labels.
*/
default int[] predict(T[] x) {
return Arrays.stream(x).mapToInt(this::predict).toArray();
}
/**
* Predicts the class labels of a list of instances.
*
* @param x the instances to be classified.
* @return the predicted class labels.
*/
default int[] predict(List x) {
return x.stream().mapToInt(this::predict).toArray();
}
/**
* Predicts the class labels of a dataset.
*
* @param x the dataset to be classified.
* @return the predicted class labels.
*/
default int[] predict(Dataset x) {
return x.stream().mapToInt(this::predict).toArray();
}
/**
* Returns true if this is a soft classifier that can estimate
* the posteriori probabilities of classification.
*
* @return true if soft classifier.
*/
default boolean soft() {
try {
predict(null, new double[numClasses()]);
} catch (UnsupportedOperationException e) {
return !e.getMessage().equals("soft classification with a hard classifier");
} catch (Exception e) {
return true;
}
return false;
}
/**
* Predicts the class label of an instance and also calculate a posteriori
* probabilities. Classifiers may NOT support this method since not all
* classification algorithms are able to calculate such a posteriori
* probabilities.
*
* @param x an instance to be classified.
* @param posteriori a posteriori probabilities on output.
* @return the predicted class label
*/
default int predict(T x, double[] posteriori) {
throw new UnsupportedOperationException("soft classification with a hard classifier");
}
/**
* Predicts the class labels of an array of instances.
*
* @param x the instances to be classified.
* @param posteriori a posteriori probabilities on output.
* @return the predicted class labels.
*/
default int[] predict(T[] x, double[][] posteriori) {
int n = x.length;
return IntStream.range(0, n).parallel()
.map(i -> predict(x[i], posteriori[i]))
.toArray();
}
/**
* Predicts the class labels of a list of instances.
*
* @param x the instances to be classified.
* @param posteriori an empty list to store a posteriori probabilities on output.
* @return the predicted class labels.
*/
default int[] predict(List x, List posteriori) {
int n = x.size();
int k = numClasses();
double[][] prob = new double[n][k];
Collections.addAll(posteriori, prob);
return IntStream.range(0, n).parallel()
.map(i -> predict(x.get(i), prob[i]))
.toArray();
}
/**
* Predicts the class labels of a dataset.
*
* @param x the dataset to be classified.
* @param posteriori an empty list to store a posteriori probabilities on output.
* @return the predicted class labels.
*/
default int[] predict(Dataset x, List posteriori) {
int n = x.size();
int k = numClasses();
double[][] prob = new double[n][k];
Collections.addAll(posteriori, prob);
return IntStream.range(0, n).parallel()
.map(i -> predict(x.get(i), prob[i]))
.toArray();
}
/**
* Returns true if this is an online learner.
*
* @return true if online learner.
*/
default boolean online() {
try {
update(null, 0);
} catch (UnsupportedOperationException e) {
return !e.getMessage().equals("update a batch learner");
} catch (Exception e) {
return true;
}
return false;
}
/**
* Online update the classifier with a new training instance.
* In general, this method may be NOT multi-thread safe.
*
* @param x the training instance.
* @param y the training label.
*/
default void update(T x, int y) {
throw new UnsupportedOperationException("update a batch learner");
}
/**
* Updates the model with a mini-batch of new samples.
* @param x the training instances.
* @param y the training labels.
*/
default void update(T[] x, int[] y) {
if (x.length != y.length) {
throw new IllegalArgumentException(String.format("Input vector x of size %d not equal to length %d of y", x.length, y.length));
}
for (int i = 0; i < x.length; i++){
update(x[i], y[i]);
}
}
/**
* Updates the model with a mini-batch of new samples.
* @param batch the training instances.
*/
default void update(Dataset> batch) {
batch.stream().forEach(sample -> update(sample.x(), sample.label()));
}
/**
* Return an ensemble of multiple base models to obtain better
* predictive performance.
*
* @param models the base models.
* @param the type of model input object.
* @return the ensemble model.
*/
@SafeVarargs
static Classifier ensemble(Classifier... models) {
return new Classifier() {
/** The ensemble is a soft classifier only if all the base models are. */
private final boolean soft = Arrays.stream(models).allMatch(Classifier::soft);
/** The ensemble is an online learner only if all the base models are. */
private final boolean online = Arrays.stream(models).allMatch(Classifier::online);
@Override
public boolean soft() {
return soft;
}
@Override
public boolean online() {
return online;
}
@Override
public int numClasses() {
return models[0].numClasses();
}
@Override
public int[] classes() {
return models[0].classes();
}
@Override
public int predict(T x) {
int[] labels = new int[models.length];
for (int i = 0; i < models.length; i++) {
labels[i] = models[i].predict(x);
}
return MathEx.mode(labels);
}
@Override
public int predict(T x, double[] posteriori) {
Arrays.fill(posteriori, 0.0);
double[] prob = new double[posteriori.length];
for (Classifier model : models) {
model.predict(x, prob);
for (int i = 0; i < prob.length; i++) {
posteriori[i] += prob[i];
}
}
for (int i = 0; i < posteriori.length; i++) {
posteriori[i] /= models.length;
}
return MathEx.whichMax(posteriori);
}
@Override
public void update(T x, int y) {
for (Classifier model : models) {
model.update(x, y);
}
}
};
}
}