All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.clustering.linkage.Linkage Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
 *
 * Smile is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Smile is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Smile.  If not, see .
 */

package smile.clustering.linkage;

import java.util.stream.IntStream;
import smile.math.MathEx;
import smile.math.distance.Distance;

/**
 * A measure of dissimilarity between clusters (i.e. sets of observations).
 * 
 * 

References

*
    *
  1. Anil K. Jain, Richard C. Dubes. Algorithms for clustering data. 1988.
  2. *
* * @see smile.clustering.HierarchicalClustering * * @author Haifeng Li */ public abstract class Linkage { /** The data size. */ int size; /** * Linearized proximity matrix to store the pair-wise distance measure * as dissimilarity between clusters. To save space, we only need the * lower half of matrix. And we use float instead of double to save * more space, which also help speed performance. During the * clustering, this matrix will be updated to reflect the dissimilarity * of merged clusters. */ float[] proximity; /** * Constructor. * @param proximity the proximity matrix. Only the lower half will * be referred. */ public Linkage(double[][] proximity) { this.size = proximity.length; if (size > 65535) { throw new IllegalArgumentException("Data size " + size + " > 65535"); } int length = (int) ((long) size * (size+1) / 2); this.proximity = new float[length]; // row wise //for (int i = 0, k = 0; i < size; i++) { // double[] pi = proximity[i]; // for (int j = 0; j <= i; j++, k++) { // this.proximity[k] = (float) pi[j]; // } //} // column wise for (int j = 0, k = 0; j < size; j++) { for (int i = j; i < size; i++, k++) { this.proximity[k] = (float) proximity[i][j]; } } } /** * Constructor. * @param size the data size. * @param proximity the column-wise linearized proximity matrix that stores * only the lower half. The length of proximity should be * size * (size+1) / 2. * To save space, Linkage will use this argument directly * without copy. The elements may be modified. */ public Linkage(int size, float[] proximity) { if (proximity.length != size * (size+1) / 2) { throw new IllegalArgumentException(String.format("The length of proximity is %d, expected %d", proximity.length, size * (size+1) / 2)); } this.size = size; this.proximity = proximity; } /** * Returns the linearized index of proximity matrix. * * @param i the row index. * @param j the column index. * @return the linearized index. */ int index(int i, int j) { // row wise // return i > j ? i*(i+1)/2 + j : j*(j+1)/2 + i; // column wise return i > j ? proximity.length - (size-j)*(size-j+1)/2 + i - j : proximity.length - (size-i)*(size-i+1)/2 + j - i; } /** * Returns the proximity matrix size. * @return the proximity matrix size. */ public int size() { return size; } /** * Returns the distance/dissimilarity between two clusters/objects, * which are indexed by integers. * * @param i the row index of proximity matrix. * @param j the column index of proximity matrix. * @return the distance/dissimilarity. */ public float d(int i, int j) { return proximity[index(i, j)]; } /** * Merges two clusters into one and update the proximity matrix. * * @param i cluster id. * @param j cluster id. */ public abstract void merge(int i, int j); /** * Computes the proximity matrix (linearized in column major) * based on Euclidean distance. * * @param data the data points. * @return the linearized proximity matrix based on Eulidean distance. */ public static float[] proximity(double[][] data) { return proximity(data, MathEx::distance); } /** * Computes the proximity matrix (linearized in column major). * * @param data the data points. * @param distance the distance function. * @param the data type of points. * @return the linearized proximity matrix. */ public static float[] proximity(T[] data, Distance distance) { int n = data.length; if (n > 65535) { throw new IllegalArgumentException("Data size " + n + " > 65535"); } int length = (int) ((long) n * (n+1) / 2); float[] proximity = new float[length]; IntStream.range(0, n).parallel().forEach(i -> { for (int j = 0; j < i; j++) { int k = length - (n-j)*(n-j+1)/2 + i - j; proximity[k] = (float) distance.d(data[i], data[j]); } }); return proximity; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy