smile.feature.extraction.SparseEncoder Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.feature.extraction;
import java.util.Arrays;
import java.util.function.Function;
import smile.data.DataFrame;
import smile.data.measure.CategoricalMeasure;
import smile.data.type.StructField;
import smile.data.Tuple;
import smile.data.type.StructType;
import smile.util.SparseArray;
/**
* Encodes numeric and categorical features into sparse array
* with on-hot encoding of categorical variables.
*
* @author Haifeng Li
*/
public class SparseEncoder implements Function {
/**
* The variable attributes.
*/
private final StructType schema;
/**
* The columns of variables to encode.
*/
private final String[] columns;
/**
* Starting index for each nominal attribute.
*/
private final int[] base;
/**
* Constructor.
* @param schema the data frame schema.
* @param columns the column names of variables to encode.
* If empty, all numeric and categorical columns will be used.
*/
public SparseEncoder(StructType schema, String... columns) {
this.schema = schema;
if (columns == null || columns.length == 0) {
columns = Arrays.stream(schema.fields())
.filter(field -> field.isNumeric() || field.measure instanceof CategoricalMeasure)
.map(field -> field.name)
.toArray(String[]::new);
}
this.columns = columns;
base = new int[columns.length];
for (int i = 0; i < columns.length; i++) {
StructField field = schema.field(columns[i]);
if (field.isNumeric()) {
if (i < base.length-1) {
base[i+1] = base[i] + 1;
}
} else if (field.measure instanceof CategoricalMeasure) {
if (i < base.length-1) {
base[i+1] = base[i] + ((CategoricalMeasure) field.measure).size();
}
} else {
throw new IllegalArgumentException(String.format("Column '%s' is neither numeric or categorical"));
}
}
}
/**
* Generates the sparse representation of given object.
* @param x an object of interest.
* @return the sparse feature vector.
*/
@Override
public SparseArray apply(Tuple x) {
SparseArray features = new SparseArray();
for (int i = 0; i < columns.length; i++) {
StructField field = schema.field(columns[i]);
if (field.isNumeric()) {
features.append(base[i], x.getDouble(columns[i]));
} else if (field.measure instanceof CategoricalMeasure) {
features.append(x.getInt(columns[i]) + base[i], 1);
} else {
throw new IllegalArgumentException(String.format("Column '%s' is neither numeric or categorical"));
}
}
return features;
}
/**
* Generates the sparse representation of a data frame.
* @param data a data frame.
* @return the sparse feature vectors.
*/
public SparseArray[] apply(DataFrame data) {
return data.stream().map(this::apply).toArray(SparseArray[]::new);
}
}