All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.feature.selection.SumSquaresRatio Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
 *
 * Smile is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Smile is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Smile.  If not, see .
 */

package smile.feature.selection;

import java.util.Arrays;
import java.util.stream.IntStream;
import smile.classification.ClassLabels;
import smile.data.DataFrame;
import smile.data.type.StructField;
import smile.data.type.StructType;
import smile.data.vector.BaseVector;
import smile.math.MathEx;

/**
 * The ratio of between-groups to within-groups sum of squares is a univariate
 * feature ranking metric, which can be used as a feature selection criterion
 * for multi-class classification problems. For each variable j, this ratio is
 * BSS(j) / WSS(j) = ΣI(yi = k)(xkj - x·j)2 / ΣI(yi = k)(xij - xkj)2;
 * where x·j denotes the average of variable j across all
 * samples, xkj denotes the average of variable j across samples
 * belonging to class k, and xij is the value of variable j of sample i.
 * Clearly, features with larger sum squares ratios are better for classification.
 * 
 * 

References

*
    *
  1. S. Dudoit, J. Fridlyand and T. Speed. Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc, 97:77-87, 2002.
  2. *
* * @author Haifeng Li */ public class SumSquaresRatio implements Comparable { /** The feature name. */ public final String feature; /** Sum squares ratio. */ public final double ssr; /** * Constructor. * @param feature The feature name. * @param ssr Sum squares ratio. */ public SumSquaresRatio(String feature, double ssr) { this.feature = feature; this.ssr = ssr; } @Override public int compareTo(SumSquaresRatio other) { return Double.compare(ssr, other.ssr); } @Override public String toString() { return String.format("SumSquaresRatio(%s, %.4f)", feature, ssr); } /** * Calculates the sum squares ratio of numeric variables. * * @param data the data frame of the explanatory and response variables. * @param clazz the column name of class labels. * @return the sum squares ratio. */ public static SumSquaresRatio[] fit(DataFrame data, String clazz) { BaseVector y = data.column(clazz); ClassLabels codec = ClassLabels.fit(y); if (codec.k < 2) { throw new UnsupportedOperationException("Invalid number of classes: " + codec.k); } int n = data.nrow(); int k = codec.k; int[] nc = new int[k]; double[] condmu = new double[k]; for (int i = 0; i < n; i++) { int yi = codec.y[i]; nc[yi]++; } StructType schema = data.schema(); return IntStream.range(0, schema.length()).mapToObj(j -> { StructField field = schema.field(j); if (field.isNumeric()) { BaseVector xj = data.column(j); double mu = 0.0; Arrays.fill(condmu, 0.0); for (int i = 0; i < n; i++) { int yi = codec.y[i]; double xij = xj.getDouble(i); mu += xij; condmu[yi] += xij; } mu /= n; for (int i = 0; i < k; i++) { condmu[i] /= nc[i]; } double wss = 0.0; double bss = 0.0; for (int i = 0; i < n; i++) { int yi = codec.y[i]; double xij = xj.getDouble(i); bss += MathEx.pow2(condmu[yi] - mu); wss += MathEx.pow2(xij - condmu[yi]); } return new SumSquaresRatio(field.name, bss / wss); } else { return null; } }).filter(s2n -> s2n != null && !s2n.feature.equals(clazz)).toArray(SumSquaresRatio[]::new); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy