smile.glm.model.Poisson Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.glm.model;
import java.util.Arrays;
import java.util.stream.IntStream;
import smile.math.MathEx;
/**
* The response variable is of Poisson distribution.
*
* @author Haifeng Li
*/
public interface Poisson {
/**
* log link function.
* @return log link function.
*/
static Model log() {
return new Model() {
@Override
public String toString() {
return "Poisson(log)";
}
@Override
public double link(double mu) {
return Math.log(mu);
}
@Override
public double invlink(double eta) {
return Math.exp(eta);
}
@Override
public double dlink(double mu) {
return 1.0 / mu;
}
@Override
public double variance(double mu) {
return mu;
}
@Override
public double mustart(double y) {
if (y < 0) {
throw new IllegalArgumentException("Invalid argument (expected non-negative): " + y);
}
return y == 0 ? 0.5 : y;
}
@Override
public double deviance(double[] y, double[] mu, double[] residuals) {
return IntStream.range(0, y.length).mapToDouble(i -> {
double d = 2.0 * y[i] * Math.log(y[i] / mu[i]);
residuals[i] = Math.sqrt(d) * Math.signum(y[i] - mu[i]);
return d;
}).sum();
}
@Override
public double nullDeviance(double[] y, double mu) {
return Arrays.stream(y).map(yi -> 2.0 * yi * Math.log(yi / mu)).sum();
}
@Override
public double logLikelihood(double[] y, double[] mu) {
return IntStream.range(0, y.length).mapToDouble(i -> -mu[i] + y[i] * Math.log(mu[i]) - MathEx.lfactorial((int) y[i])).sum();
}
};
}
}