All Downloads are FREE. Search and download functionalities are using the official Maven repository.

smile.manifold.TSNE Maven / Gradle / Ivy

There is a newer version: 4.0.0
Show newest version
/*
 * Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
 *
 * Smile is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Smile is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Smile.  If not, see .
 */

package smile.manifold;

import java.io.Serializable;
import java.util.Arrays;
import java.util.stream.IntStream;
import smile.math.MathEx;
import smile.stat.distribution.GaussianDistribution;

/**
 * The t-distributed stochastic neighbor embedding. The t-SNE is a nonlinear
 * dimensionality reduction technique that is particularly well suited
 * for embedding high-dimensional data into a space of two or three
 * dimensions, which can then be visualized in a scatter plot. Specifically,
 * it models each high-dimensional object by a two- or three-dimensional
 * point in such a way that similar objects are modeled by nearby points
 * and dissimilar objects are modeled by distant points.
 * 

* The t-SNE algorithm comprises two main stages. First, t-SNE constructs * a probability distribution over pairs of high-dimensional objects in * such a way that similar objects have a high probability of being picked, * whilst dissimilar points have an infinitesimal probability of being picked. * Second, t-SNE defines a similar probability distribution over the points * in the low-dimensional map, and it minimizes the Kullback–Leibler * divergence between the two distributions with respect to the locations * of the points in the map. Note that while the original algorithm uses * the Euclidean distance between objects as the base of its similarity * metric, this should be changed as appropriate. * *

References

*
    *
  1. L.J.P. van der Maaten. Accelerating t-SNE using Tree-Based Algorithms. * Journal of Machine Learning Research 15(Oct):3221-3245, 2014.
  2. *
  3. L.J.P. van der Maaten and G.E. Hinton. Visualizing Non-Metric * Similarities in Multiple Maps. Machine Learning 87(1):33-55, 2012.
  4. *
  5. L.J.P. van der Maaten. Learning a Parametric Embedding by Preserving * Local Structure. In Proceedings of the Twelfth International Conference * on Artificial Intelligence & Statistics (AI-STATS), * JMLR W&CP 5:384-391, 2009.
  6. *
  7. L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional * Data Using t-SNE. Journal of Machine Learning Research * 9(Nov):2579-2605, 2008.
  8. *
* * @see UMAP * * @author Haifeng Li */ public class TSNE implements Serializable { private static final long serialVersionUID = 2L; private static final org.slf4j.Logger logger = org.slf4j.LoggerFactory.getLogger(TSNE.class); /** * The coordinate matrix in embedding space. */ public final double[][] coordinates; /** * The learning rate. */ private final double eta; /** * The number of iterations so far. */ private int totalIter = 0; /** * The momentum factor. */ private double momentum = 0.5; /** * The momentum in later stage. */ private final double finalMomentum = 0.8; /** * The number of iterations at which switch the momentum to * finalMomentum. */ private final int momentumSwitchIter = 250; /** * The floor of gain. */ private final double minGain = .01; /** The gain matrix. */ private final double[][] gains; // adjust learning rate for each point /** The probability matrix of the distances in the input space. */ private final double[][] P; /** The probability matrix of the distances in the feature space. */ private final double[][] Q; /** The sum of Q matrix. */ private double Qsum; /** The cost function value. */ private double cost; /** Constructor. Train t-SNE for 1000 iterations, perplexity = 20 and learning rate = 200. * * @param X the input data. If X is a square matrix, it is assumed to be * the squared distance/dissimilarity matrix. * @param d the dimension of embedding space. */ public TSNE(double[][] X, int d) { this(X, d, 20, 200, 1000); } /** Constructor. Train t-SNE for given number of iterations. * * @param X the input data. If X is a square matrix, it is assumed to be * the squared distance/dissimilarity matrix. * @param d the dimension of embedding space. * @param perplexity the perplexity of the conditional distribution. * @param eta the learning rate. * @param iterations the number of iterations. */ public TSNE(double[][] X, int d, double perplexity, double eta, int iterations) { this.eta = eta; int n = X.length; double[][] D; if (X.length == X[0].length) { D = X; } else { D = new double[n][n]; MathEx.pdist(X, D, MathEx::squaredDistance); } coordinates = new double[n][d]; double[][] Y = coordinates; gains = new double[n][d]; // adjust learning rate for each point // Initialize Y randomly by N(0, 0.0001) GaussianDistribution gaussian = new GaussianDistribution(0.0, 0.0001); for (int i = 0; i < n; i++) { Arrays.fill(gains[i], 1.0); double[] Yi = Y[i]; for (int j = 0; j < d; j++) { Yi[j] = gaussian.rand(); } } // Large tolerance to speed up the search of Gaussian kernel width // A small difference of kernel width is not important. P = expd(D, perplexity, 1E-3); Q = new double[n][n]; // Make P symmetric // sum(P) = 2 * n as each row of P is normalized double Psum = 2 * n; for (int i = 0; i < n; i++) { double[] Pi = P[i]; for (int j = 0; j < i; j++) { double p = 12.0 * (Pi[j] + P[j][i]) / Psum; if (Double.isNaN(p) || p < 1E-16) p = 1E-16; Pi[j] = p; P[j][i] = p; } } update(iterations); } /** * Returns the cost function value. * @return the cost function value. */ public double cost() { return cost; } /** * Performs additional iterations. * @param iterations the number of iterations. */ public void update(int iterations) { double[][] Y = coordinates; int n = Y.length; int d = Y[0].length; double[][] dY = new double[n][d]; double[][] dC = new double[n][d]; for (int iter = 1; iter <= iterations; iter++, totalIter++) { Qsum = computeQ(Y, Q); IntStream.range(0, n).parallel().forEach(i -> sne(i, dY[i], dC[i])); // gradient update with momentum and gains IntStream.range(0, n).parallel().forEach(i -> { double[] Yi = Y[i]; double[] dYi = dY[i]; double[] dCi = dC[i]; double[] g = gains[i]; for (int k = 0; k < d; k++) { dYi[k] = momentum * dYi[k] - eta * g[k] * dCi[k]; Yi[k] += dYi[k]; } }); if (totalIter == momentumSwitchIter) { momentum = finalMomentum; for (int i = 0; i < n; i++) { double[] Pi = P[i]; for (int j = 0; j < n; j++) { Pi[j] /= 12.0; } } } // Compute current value of cost function if (iter % 100 == 0) { cost = computeCost(P, Q); logger.info("Error after {} iterations: {}", iter, cost); } } // Make solution zero-mean double[] colMeans = MathEx.colMeans(Y); IntStream.range(0, n).parallel().forEach(i -> { double[] Yi = Y[i]; for (int j = 0; j < d; j++) { Yi[j] -= colMeans[j]; } }); if (iterations % 100 != 0) { cost = computeCost(P, Q); logger.info("Error after {} iterations: {}", iterations, cost); } } /** Computes the gradients and updates the coordinates. */ private void sne(int i, double[] dY, double[] dC) { double[][] Y = coordinates; int n = Y.length; int d = Y[0].length; // Compute gradient // dereference before the loop for better performance double[] Yi = Y[i]; double[] Pi = P[i]; double[] Qi = Q[i]; double[] g = gains[i]; Arrays.fill(dC, 0.0); for (int j = 0; j < n; j++) { if (i != j) { double[] Yj = Y[j]; double q = Qi[j]; double z = (Pi[j] - (q / Qsum)) * q; for (int k = 0; k < d; k++) { dC[k] += 4.0 * (Yi[k] - Yj[k]) * z; } } } // Update gains for (int k = 0; k < d; k++) { g[k] = (Math.signum(dC[k]) != Math.signum(dY[k])) ? (g[k] + .2) : (g[k] * .8); if (g[k] < minGain) g[k] = minGain; } } /** Compute the Gaussian kernel (search the width for given perplexity). */ private double[][] expd(double[][] D, double perplexity, double tol) { int n = D.length; double[][] P = new double[n][n]; double[] DiSum = MathEx.rowSums(D); IntStream.range(0, n).parallel().forEach(i -> { double logU = MathEx.log2(perplexity); double[] Pi = P[i]; double[] Di = D[i]; // Use sqrt(1 / avg of distance) to initialize beta double beta = Math.sqrt((n-1) / DiSum[i]); double betamin = 0.0; double betamax = Double.POSITIVE_INFINITY; logger.debug("initial beta[{}] = {}", i, beta); // Evaluate whether the perplexity is within tolerance double Hdiff = Double.MAX_VALUE; for (int iter = 0; Math.abs(Hdiff) > tol && iter < 50; iter++) { double Pisum = 0.0; double H = 0.0; for (int j = 0; j < n; j++) { double d = beta * Di[j]; double p = Math.exp(-d); Pi[j] = p; Pisum += p; H += p * d; } // P[i][i] should be 0 Pi[i] = 0.0; Pisum -= 1.0; H = MathEx.log2(Pisum) + H / Pisum; Hdiff = H - logU; if (Math.abs(Hdiff) > tol) { if (Hdiff > 0) { betamin = beta; if (Double.isInfinite(betamax)) beta *= 2.0; else beta = (beta + betamax) / 2; } else { betamax = beta; beta = (beta + betamin) / 2; } } else { // normalize by row for (int j = 0; j < n; j++) { Pi[j] /= Pisum; } } logger.debug("Hdiff = {}, beta[{}] = {}, H = {}, logU = {}", Hdiff, i, beta, H, logU); } }); return P; } /** * Computes the Q matrix. */ private double computeQ(double[][] Y, double[][] Q) { int n = Y.length; // DoubleStream.sum is unreproducible across machines // due to scheduling randomness. Therefore, we accumulate the // row sum and then compute the overall sum. double[] rowSum = IntStream.range(0, n).parallel().mapToDouble(i -> { double[] Yi = Y[i]; double[] Qi = Q[i]; double sum = 0.0; for (int j = 0; j < n; j++) { double q = 1.0 / (1.0 + MathEx.squaredDistance(Yi, Y[j])); Qi[j] = q; sum += q; } return sum; }).toArray(); return MathEx.sum(rowSum); } /** * Computes the cost function. */ private double computeCost(double[][] P, double[][] Q) { return 2 * IntStream.range(0, Q.length).parallel().mapToDouble(i -> { double[] Pi = P[i]; double[] Qi = Q[i]; double C = 0.0; for (int j = 0; j < i; j++) { double p = Pi[j]; double q = Qi[j] / Qsum; if (Double.isNaN(q) || q < 1E-16) q = 1E-16; C += p * MathEx.log2(p / q); } return C; }).sum(); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy