smile.anomaly.IsolationTree Maven / Gradle / Ivy
The newest version!
/*
* Copyright (c) 2010-2021 Haifeng Li. All rights reserved.
*
* Smile is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Smile is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Smile. If not, see .
*/
package smile.anomaly;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
import smile.math.MathEx;
import smile.stat.distribution.GaussianDistribution;
/**
* Isolation tree.
*
* @author Haifeng Li
*/
public class IsolationTree implements Serializable {
/**
* Isolation tree node.
*/
static class Node implements Serializable {
/** The adjusted depth of node in the tree. */
final double depth;
/** The normal vector of random hyperplane, uniformly over the unit N-Sphere. */
final double[] slope;
/**
* The intercept point, draw from a uniform distribution
* over the range of values present at each branching point
*/
final double[] intercept;
/** The dot product of slope and intercept. */
final double bias;
/** The left child branch. */
final Node left;
/** The right child branch. */
final Node right;
/**
* Leaf node constructor.
* @param depth the adjusted depth of node in the tree.
*/
Node(double depth) {
this(depth, null, null, 0.0, null, null);
}
/**
* Constructor.
* @param depth the adjusted depth of node in the tree.
* @param slope the normal vector of random hyperplane.
* @param intercept the intercept point.
* @param bias the dot product of slope and intercept.
* @param left the left child branch.
* @param right the right child branch.
*/
Node(double depth, double[] slope, double[] intercept, double bias, Node left, Node right) {
this.depth = depth;
this.slope = slope;
this.intercept = intercept;
this.bias = bias;
this.left = left;
this.right = right;
}
/**
* Returns the path length from the root to the leaf node.
* @param x the sample.
* @return the path length.
*/
public double path(double[] x) {
if (left == null && right == null) {
return depth;
} else {
double dot = MathEx.dot(x, slope);
if (dot < bias) {
return left.path(x);
} else {
return right.path(x);
}
}
}
}
/**
* Tree root node.
*/
private final Node root;
/**
* Constructor.
*
* @param data the training data.
* @param maxDepth the maximum depth of the tree.
* @param extensionLevel the extension level.
*/
public IsolationTree(List data, int maxDepth, int extensionLevel) {
root = buildNode(data, maxDepth, extensionLevel, 0);
}
/**
* Returns the path length from the root to the leaf node.
* @param x the sample.
* @return the path length.
*/
public double path(double[] x) {
return root.path(x);
}
/**
* Builds an isolation tree node.
* @param data the training data.
* @param maxDepth the maximum depth of the tree.
* @param extensionLevel the extension level.
* @param depth the node depth in the tree.
* @return the node.
*/
private Node buildNode(List data, int maxDepth, int extensionLevel, int depth) {
if (depth >= maxDepth || data.size() <= 1) {
double adjustedDepth = depth;
if (data.size() > 1) {
adjustedDepth += IsolationForest.factor(data.size());
}
return new Node(adjustedDepth);
} else {
double[] min = data.getFirst().clone();
double[] max = data.getFirst().clone();
int p = min.length;
for (double[] x : data) {
for (int i = 0; i < p; i++) {
if (x[i] < min[i]) min[i] = x[i];
else if (x[i] > max[i]) max[i] = x[i];
}
}
// Pick a random point on splitting hyperplane
double[] intercept = new double[p];
for (int i = 0; i < p; i++) {
intercept[i] = MathEx.random(min[i], max[i]);
}
// Pick a random normal vector according to specified extension level
GaussianDistribution gauss = GaussianDistribution.getInstance();
double[] slope = new double[p];
for (int i = 0; i < p; i++) {
slope[i] = gauss.rand();
}
int[] index = MathEx.permutate(p);
for (int i = 0; i < p - extensionLevel - 1; i++) {
slope[index[i]] = 0.0;
}
double bias = MathEx.dot(slope, intercept);
ArrayList leftData = new ArrayList<>();
ArrayList rightData = new ArrayList<>();
for (double[] x : data) {
double dot = MathEx.dot(x, slope);
if (dot < bias) {
leftData.add(x);
} else {
rightData.add(x);
}
}
Node left = buildNode(leftData, maxDepth, extensionLevel, depth+1);
Node right = buildNode(rightData, maxDepth, extensionLevel, depth+1);
return new Node(depth, slope, intercept, bias, left, right);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy